Topological Hochschild homology and the Bass trace conjecture

被引:2
作者
Berrick, A. J. [1 ,2 ]
Hesselholt, Lars [3 ,4 ]
机构
[1] Yale NUS Coll, Singapore 138614, Singapore
[2] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
[3] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
[4] Univ Copenhagen, Dept Math Sci, DK-2100 Copenhagen O, Denmark
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2015年 / 704卷
关键词
ALGEBRAIC K-THEORY;
D O I
10.1515/crelle-2013-0051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the methods of topological Hochschild homology to shed new light on groups satisfying the Bass trace conjecture. Factorization of the Hattori-Stallings rank map through the Bokstedt-Hsiang-Madsen cyclotomic trace map leads to Linnell's restriction on such groups. As a new consequence of this restriction, we show that the conjecture holds for any group G wherein every subgroup isomorphic to the additive group of rational numbers has nontrivial and central image in some quotient of G.
引用
收藏
页码:169 / 185
页数:17
相关论文
共 32 条
  • [1] On the K-theory of truncated polynomial algebras over the integers
    Angeltveit, Vigleik
    Gerhardt, Teena
    Hesselholt, Lars
    [J]. JOURNAL OF TOPOLOGY, 2009, 2 (02) : 277 - 294
  • [2] [Anonymous], 1973, Lect. Notes Math., DOI 10.1007/BFb0067053
  • [3] EULER CHARACTERISTICS AND CHARACTERS OF DISCRETE GROUPS
    BASS, H
    [J]. INVENTIONES MATHEMATICAE, 1976, 35 : 155 - 196
  • [4] The acyclic group dichotomy
    Berrick, A. J.
    [J]. JOURNAL OF ALGEBRA, 2011, 326 (01) : 47 - 58
  • [5] From acyclic groups to the Bass conjecture for amenable groups
    Berrick, AJ
    Chatterji, I
    Mislin, G
    [J]. MATHEMATISCHE ANNALEN, 2004, 329 (04) : 597 - 621
  • [6] THE CYCLOTOMIC TRACE AND ALGEBRAIC K-THEORY OF SPACES
    BOKSTEDT, M
    HSIANG, WC
    MADSEN, I
    [J]. INVENTIONES MATHEMATICAE, 1993, 111 (03) : 465 - 540
  • [7] Bokstedt M., 1985, PREPRINT
  • [8] ZERO DIVISORS AND IDEMPOTENTS IN GROUP-RINGS
    CLIFF, GH
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1980, 32 (03): : 596 - 602
  • [9] ON THE NOTION OF GEOMETRIC REALIZATION
    Drinfeld, Vladimir
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2004, 4 (03) : 619 - 626
  • [10] Dundas B. I., 2013, ALGEBR APPL, V18