Brain Tumor Segmentation Using Dual-Path Attention U-Net in 3D MRI Images

被引:15
|
作者
Jun, Wen [1 ]
Xu, Haoxiang [1 ]
Wang, Zhang [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu, Peoples R China
来源
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I | 2021年 / 12658卷
关键词
Brain tumor segmentation; U-Net; 3D convolution;
D O I
10.1007/978-3-030-72084-1_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semantic segmentation plays an essential role in brain tumor diagnosis and treatment planning. Yet, manual segmentation is a time-consuming task. That fact leads to hire the Deep Neural Networks to segment brain tumor. In this work, we proposed a variety of 3D U-Net, which can achieve comparable segmentation accuracy with less graphic memory cost. To be more specific, our model employs a modified attention block to refine the feature map representation along the skip-connection bridge, which consists of parallelly connected spatial and channel attention blocks. Dice coefficients for enhancing tumor, whole tumor, and tumor core reached 0.752, 0.879 and 0.779 respectively on the BRATS-2020 valid dataset.
引用
收藏
页码:183 / 193
页数:11
相关论文
共 50 条
  • [1] Brain Tumor Segmentation from 3D MRI Scans Using U-Net
    Montaha S.
    Azam S.
    Rakibul Haque Rafid A.K.M.
    Hasan M.Z.
    Karim A.
    SN Computer Science, 4 (4)
  • [2] GAIR-U-Net: 3D guided attention inception residual u-net for brain tumor segmentation using multimodal MRI images
    Rutoh, Evans Kipkoech
    Guang, Qin Zhi
    Bahadar, Noor
    Raza, Rehan
    Hanif, Muhammad Shehzad
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (06)
  • [3] Attention 3D U-Net with Multiple Skip Connections for Segmentation of Brain Tumor Images
    Nodirov, Jakhongir
    Abdusalomov, Akmalbek Bobomirzaevich
    Whangbo, Taeg Keun
    SENSORS, 2022, 22 (17)
  • [4] MAU-Net: Mixed attention U-Net for MRI brain tumor segmentation
    Zhang, Yuqing
    Han, Yutong
    Zhang, Jianxin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (12) : 20510 - 20527
  • [6] Brain Tumor Segmentation in MRI Images Using A Modified U-Net Model
    Vo, Thong
    Dave, Pranjal
    Bajpai, Gaurav
    Kashef, Rasha
    Khan, Naimul
    2022 IEEE INTERNATIONAL CONFERENCE ON DIGITAL HEALTH (IEEE ICDH 2022), 2022, : 29 - 33
  • [7] Dual attention U-net for liver tumor segmentation in CT images
    Alirr, Omar Ibrahim
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2024, 19 (02)
  • [8] MRI Brain Tumor Segmentation Using 3D U-Net with Dense Encoder Blocks and Residual Decoder Blocks
    Tie, Juhong
    Peng, Hui
    Zhou, Jiliu
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 128 (02): : 427 - 445
  • [9] Brain Tumor Segmentation of MRI Images Using Processed Image Driven U-Net Architecture
    Arora, Anuja
    Jayal, Ambikesh
    Gupta, Mayank
    Mittal, Prakhar
    Satapathy, Suresh Chandra
    COMPUTERS, 2021, 10 (11)
  • [10] Brain Tumor Segmentation Based on 2D U-Net Using MRI Multi-modalities Brain Images
    Tene-Hurtado, Daniela
    Almeida-Galarraga, Diego A.
    Villalba-Meneses, Gandhi
    Alvarado-Cando, Omar
    Cadena-Morejon, Carolina
    Salazar, Valeria Herrera
    Orozco-Lopez, Onofre
    Tirado-Espin, Andres
    SMART TECHNOLOGIES, SYSTEMS AND APPLICATIONS, SMARTTECH-IC 2021, 2022, 1532 : 345 - 359