Polarization- and wavelength-resolved near-field imaging of complex plasmonic modes in Archimedean nanospirals

被引:12
作者
Hachtel, Jordan A. [1 ]
Davidson, Roderick B., II [2 ,3 ]
Kovalik, Elena R. [4 ]
Retterer, Scott T. [1 ]
Lupini, Andrew R. [5 ]
Haglund, Richard F., Jr. [2 ]
Lawrie, Benjamin J. [3 ,6 ]
Pantelides, Sokrates T. [2 ,3 ]
机构
[1] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[2] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
[3] Oak Ridge Natl Lab, Quantum Informat Sci Grp, Oak Ridge, TN 37831 USA
[4] Univ North Carolina Chapel Hill, Dept Phys & Astron, Chapel Hill, NC 27599 USA
[5] Oak Ridge Natl Lab, Mat Sci & Engn Div, Oak Ridge, TN 37831 USA
[6] Oak Ridge Natl Lab, Inst Funct Imaging Mat, Oak Ridge, TN 37831 USA
关键词
CATHODOLUMINESCENCE SPECTROSCOPY; GENERATION;
D O I
10.1364/OL.43.000927
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Asymmetric nanophotonic structures enable a wide range of opportunities in optical nanotechnology because they support efficient optical nonlinearities mediated by multiple plasmon resonances over a broad spectral range. The Archimedean nanospiral is a canonical example of a chiral plasmonic structure because it supports even-order nonlinearities that are not generally accessible in locally symmetric geometries. However, the complex spiral response makes nanoscale experimental characterization of the plasmonic near-field structure highly desirable. Here we employ high-efficiency, high-spatial-resolution cathodoluminescence imaging in a scanning transmission electron microscope to describe the spatial, spectral, and polarization response of plasmon modes in the nanospiral geometry. (C) 2018 Optical Society of America
引用
收藏
页码:927 / 930
页数:4
相关论文
共 21 条
[1]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[2]  
Atre AC, 2015, NAT NANOTECHNOL, V10, P429, DOI [10.1038/nnano.2015.39, 10.1038/NNANO.2015.39]
[3]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[4]   Signatures of Fano Interferences in the Electron Energy Loss Spectroscopy and Cathodoluminescence of Symmetry-Broken Nanorod Dimers [J].
Bigelow, Nicholas W. ;
Vaschillo, Alex ;
Camden, Jon P. ;
Masiello, David J. .
ACS NANO, 2013, 7 (05) :4511-4519
[5]   Periodically Varying Height in Metal Nano-pillars for Enhanced Generation of Localized Surface Plasmon Field [J].
Chamuah, Nabadweep ;
Nath, Pabitra .
PLASMONICS, 2015, 10 (06) :1367-1372
[6]   Efficient forward second-harmonic generation from planar archimedean nanospirals [J].
Davidson, Roderick B., II ;
Ziegler, Jed I. ;
Vargas, Guillermo ;
Avanesyan, Sergey M. ;
Gong, Yu ;
Hess, Wayne ;
Haglund, Richard F., Jr. .
NANOPHOTONICS, 2015, 4 (01) :108-113
[7]   Hot Electron Generation and Cathodoluminescence Nanoscopy of Chiral Split Ring Resonators [J].
Fang, Yurui ;
Verre, Ruggero ;
Shao, Lei ;
Nordlander, Peter ;
Kall, Mikael .
NANO LETTERS, 2016, 16 (08) :5183-5190
[8]   Localized Surface Plasmon Resonances in Spatially Dispersive Nano-Objects: Phenomenological Treatise [J].
Ginzburg, Pavel ;
Zayats, Anatoly V. .
ACS NANO, 2013, 7 (05) :4334-4342
[9]   Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope [J].
Hachtel, J. A. ;
Marvinney, C. ;
Mouti, A. ;
Mayo, D. ;
Mu, R. ;
Pennycook, S. J. ;
Lupini, A. R. ;
Chisholm, M. F. ;
Haglund, R. F. ;
Pantelides, S. T. .
NANOTECHNOLOGY, 2016, 27 (15)
[10]  
Hachtel J. A., 2017, ARXIV170510640PHYSIC