Nonlinear waves in Bose-Einstein condensates:: physical relevance and mathematical techniques

被引:281
作者
Carretero-Gonzalez, R. [1 ,2 ]
Frantzeskakis, D. J. [3 ]
Kevrekidis, P. G. [4 ]
机构
[1] San Diego State Univ, Dept Math & Stat, Nonlinear Dynam Syst Grp, San Diego, CA 92182 USA
[2] San Diego State Univ, Dept Math & Stat, Computat Sci Res Ctr, San Diego, CA 92182 USA
[3] Univ Athens, Dept Phys, Zografos 15784, Greece
[4] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
D O I
10.1088/0951-7715/21/7/R01
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this review is to introduce the reader to some of the physical notions and the mathematical methods that are relevant to the study of nonlinear waves in Bose-Einstein condensates (BECs). Upon introducing the general framework, we discuss the prototypical models that are relevant to this setting for different dimensions and different potentials confining the atoms. We analyse some of the model properties and explore their typical wave solutions (plane wave solutions, bright, dark, gap solitons as well as vortices). We then offer a collection of mathematical methods that can be used to understand the existence, stability and dynamics of nonlinear waves in such BECs, either directly or starting from different types of limits (e.g. the linear or the nonlinear limit or the discrete limit of the corresponding equation). Finally, we consider some special topics involving more recent developments, and experimental setups in which there is still considerable need for developing mathematical as well as computational tools.
引用
收藏
页码:R139 / R202
页数:64
相关论文
共 549 条
[71]   A density-functional approach to fermionization in the 1D Bose gas [J].
Brand, J .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2004, 37 (07) :S287-S300
[72]   Dark solitons as quasiparticles in trapped condensates [J].
Brazhnyi, V. A. ;
Konotop, V. V. ;
Pitaevskii, L. P. .
PHYSICAL REVIEW A, 2006, 73 (05)
[73]   Theory of nonlinear matter waves in optical lattices [J].
Brazhnyi, VA ;
Konotop, VV .
MODERN PHYSICS LETTERS B, 2004, 18 (14) :627-651
[74]   Bose-Einstein condensates in standing waves: The cubic nonlinear Schrodinger equation with a periodic potential [J].
Bronski, JC ;
Carr, LD ;
Deconinck, B ;
Kutz, JN .
PHYSICAL REVIEW LETTERS, 2001, 86 (08) :1402-1405
[75]   Incoherent matter-wave solitons and pairing instability in an attractively interacting Bose-Einstein condensate [J].
Buljan, H ;
Segev, M ;
Vardi, A .
PHYSICAL REVIEW LETTERS, 2005, 95 (18)
[76]   Quasi-2D Bose-Einstein condensation in an optical lattice [J].
Burger, S ;
Cataliotti, FS ;
Fort, C ;
Maddaloni, P ;
Minardi, F ;
Inguscio, M .
EUROPHYSICS LETTERS, 2002, 57 (01) :1-6
[77]   Dark solitons in Bose-Einstein condensates [J].
Burger, S ;
Bongs, K ;
Dettmer, S ;
Ertmer, W ;
Sengstock, K ;
Sanpera, A ;
Shlyapnikov, GV ;
Lewenstein, M .
PHYSICAL REVIEW LETTERS, 1999, 83 (25) :5198-5201
[78]   Motion of dark solitons in trapped Bose-Einstein condensates [J].
Busch, T ;
Anglin, JR .
PHYSICAL REVIEW LETTERS, 2000, 84 (11) :2298-2301
[79]   Dark-bright solitons in inhomogeneous Bose-Einstein condensates [J].
Busch, T ;
Anglin, JR .
PHYSICAL REVIEW LETTERS, 2001, 87 (01)
[80]   Stability and collective excitations of a two-component Bose-Einstein condensed gas: A moment approach [J].
Busch, T ;
Cirac, JI ;
Perez-Garcia, VM ;
Zoller, P .
PHYSICAL REVIEW A, 1997, 56 (04) :2978-2983