Nonlinear waves in Bose-Einstein condensates:: physical relevance and mathematical techniques

被引:281
作者
Carretero-Gonzalez, R. [1 ,2 ]
Frantzeskakis, D. J. [3 ]
Kevrekidis, P. G. [4 ]
机构
[1] San Diego State Univ, Dept Math & Stat, Nonlinear Dynam Syst Grp, San Diego, CA 92182 USA
[2] San Diego State Univ, Dept Math & Stat, Computat Sci Res Ctr, San Diego, CA 92182 USA
[3] Univ Athens, Dept Phys, Zografos 15784, Greece
[4] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
D O I
10.1088/0951-7715/21/7/R01
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this review is to introduce the reader to some of the physical notions and the mathematical methods that are relevant to the study of nonlinear waves in Bose-Einstein condensates (BECs). Upon introducing the general framework, we discuss the prototypical models that are relevant to this setting for different dimensions and different potentials confining the atoms. We analyse some of the model properties and explore their typical wave solutions (plane wave solutions, bright, dark, gap solitons as well as vortices). We then offer a collection of mathematical methods that can be used to understand the existence, stability and dynamics of nonlinear waves in such BECs, either directly or starting from different types of limits (e.g. the linear or the nonlinear limit or the discrete limit of the corresponding equation). Finally, we consider some special topics involving more recent developments, and experimental setups in which there is still considerable need for developing mathematical as well as computational tools.
引用
收藏
页码:R139 / R202
页数:64
相关论文
共 549 条
[51]   Unified semiclassical approximation for Bose-Einstein condensates: Application to a BEC in an optical potential [J].
Band, YB ;
Towers, I ;
Malomed, BA .
PHYSICAL REVIEW A, 2003, 67 (02) :11
[52]   STABILITY AND EVOLUTION OF THE QUIESCENT AND TRAVELING SOLITONIC BUBBLES [J].
BARASHENKOV, IV ;
PANOVA, EY .
PHYSICA D, 1993, 69 (1-2) :114-134
[53]   Stability criterion for dark solitons [J].
Barashenkov, IV .
PHYSICAL REVIEW LETTERS, 1996, 77 (07) :1193-1197
[54]   All-optical formation of an atomic Bose-Einstein condensate [J].
Barrett, MD ;
Sauer, JA ;
Chapman, MS .
PHYSICAL REVIEW LETTERS, 2001, 87 (01)
[55]   DARK SOLITARY WAVES IN A GENERALIZED VERSION OF THE NONLINEAR SCHRODINGER-EQUATION [J].
BASS, FG ;
KONOTOP, VV ;
PUZENKO, SA .
PHYSICAL REVIEW A, 1992, 46 (07) :4185-4191
[56]   Stable skyrmions in two-component Bose-Einstein condensates [J].
Battye, RA ;
Cooper, NR ;
Sutcliffe, PM .
PHYSICAL REVIEW LETTERS, 2002, 88 (08) :4-080401
[57]  
BECKER C, 2008, ARXIV08040544
[58]   Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities [J].
Belmonte-Beitia, Juan ;
Perez-Garcia, Victor M. ;
Vekslerchik, Vadym ;
Torres, Pedro J. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[59]   The nonlinear Schrodinger equation with a strongly anisotropic harmonic potential [J].
Ben Abdallah, N ;
Méhats, F ;
Schmeiser, C ;
Weishäupl, RM .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (01) :189-199
[60]   Pade approximations of solitary wave solutions of the Gross-Pitaevskii equation [J].
Berloff, NG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (05) :1617-1632