Characterization of Microcrystalline and Amorphous Thin Film Silicon Devices with Raman Spectroscopy

被引:0
作者
Hodkiewicz, J. [1 ]
Wall, M. [1 ]
机构
[1] Thermo Fisher Sci, 5225 Verona Rd, Madison, WI 53711 USA
来源
NANOTECHNOLOGY 2011: BIO SENSORS, INSTRUMENTS, MEDICAL, ENVIRONMENT AND ENERGY, NSTI-NANOTECH 2011, VOL 3 | 2011年
关键词
microcrystalline silicon; raman; silicon fraction;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Silicon deposited on glass or silicon carbide is widely used in manufacturing photovoltaic cells. Both the proportion and distribution of amorphous and crystalline silicon are critical for performance and are therefore important to monitor. Raman spectroscopy is an ideal technique for this application, as the two forms generate readily distinguishable spectra that lend themselves to simple quantification methods using Beer's Law. Mapping generates chemical images with detailed information on the spatial distribution of the crystalline and amorphous forms. Since excess excitation laser power can convert amorphous silicon into crystalline silicon, care must be taken to limit the amount of power used. The Thermo Scientific DXR Raman microscope, which is equipped with a laser power regulator, is ideal for this application, particularly if the method has to be replicated from instrument to instrument at multiple manufacturing plants.
引用
收藏
页码:707 / 708
页数:2
相关论文
共 50 条
  • [41] Monitoring of the growth of microcrystalline silicon by plasma-enhanced chemical vapor deposition using in-situ Raman spectroscopy
    Muthmann, S.
    Koehler, F.
    Meier, M.
    Huelsbeck, M.
    Carius, R.
    Gordijn, A.
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2011, 5 (04): : 144 - 146
  • [42] Microcrystalline bottom cells in large area thin film silicon MICROMORPH™ solar modules
    Hoetzel, J. E.
    Caglar, O.
    Cashmore, J. S.
    Goury, C.
    Kalas, J.
    Klindworth, M.
    Kupich, M.
    Leu, G. -F.
    Lindic, M. -H.
    Losio, P. A.
    Mates, T.
    Mereu, B.
    Roschek, T.
    Sinicco, I.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 157 : 178 - 189
  • [43] An approach to device grade amorphous and microcrystalline silicon thin films fabricated at higher deposition rates
    Kondo, M
    Matsuda, A
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2002, 6 (05) : 445 - 453
  • [44] Electrical detection of Rabi oscillations in microcrystalline silicon thin-film solar cells
    Meier, C.
    Behrends, J.
    Bittl, R.
    MOLECULAR PHYSICS, 2013, 111 (18-19) : 2683 - 2689
  • [45] Electrical Stability of High-Mobility Microcrystalline Silicon Thin-Film Transistors
    Risteska, Anita
    Chan, Kah-Yoong
    Gordijn, Aad
    Stiebig, Helmut
    Knipp, Dietmar
    JOURNAL OF DISPLAY TECHNOLOGY, 2012, 8 (01): : 27 - 34
  • [46] A study of Raman and optical emission spectroscopy on microcrystalline silicon films deposited by VHF-PECVD
    Zhang, XD
    Zhao, Y
    Zhu, F
    Wei, CC
    Wu, CY
    ACTA PHYSICA SINICA, 2005, 54 (01) : 445 - 449
  • [47] On the oxidation mechanism of microcrystalline silicon thin films studied by Fourier transform infrared spectroscopy
    Bronneberg, A. C.
    Smets, A. H. M.
    Creatore, M.
    van de Sanden, M. C. M.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2011, 357 (03) : 884 - 887
  • [48] Substrate temperature and hydrogen dilution: parameters for amorphous to microcrystalline phase transition in silicon thin films
    Ray, S
    Das, C
    Mukhopadhyay, S
    Saha, SC
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2002, 74 (1-4) : 393 - 400
  • [49] Infrared and Raman spectroscopy of organic thin films used for electronic devices
    Furukawa, Y.
    Seto, K.
    Nakajima, K.
    Itoh, Y.
    Eguchi, J.
    Sugiyama, T.
    Fujimura, H.
    VIBRATIONAL SPECTROSCOPY, 2012, 60 : 5 - 9
  • [50] Diffusion and evolution of hydrogen in hydrogenated amorphous and microcrystalline silicon
    Beyer, W
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2003, 78 (1-4) : 235 - 267