Characterization of Microcrystalline and Amorphous Thin Film Silicon Devices with Raman Spectroscopy

被引:0
作者
Hodkiewicz, J. [1 ]
Wall, M. [1 ]
机构
[1] Thermo Fisher Sci, 5225 Verona Rd, Madison, WI 53711 USA
来源
NANOTECHNOLOGY 2011: BIO SENSORS, INSTRUMENTS, MEDICAL, ENVIRONMENT AND ENERGY, NSTI-NANOTECH 2011, VOL 3 | 2011年
关键词
microcrystalline silicon; raman; silicon fraction;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Silicon deposited on glass or silicon carbide is widely used in manufacturing photovoltaic cells. Both the proportion and distribution of amorphous and crystalline silicon are critical for performance and are therefore important to monitor. Raman spectroscopy is an ideal technique for this application, as the two forms generate readily distinguishable spectra that lend themselves to simple quantification methods using Beer's Law. Mapping generates chemical images with detailed information on the spatial distribution of the crystalline and amorphous forms. Since excess excitation laser power can convert amorphous silicon into crystalline silicon, care must be taken to limit the amount of power used. The Thermo Scientific DXR Raman microscope, which is equipped with a laser power regulator, is ideal for this application, particularly if the method has to be replicated from instrument to instrument at multiple manufacturing plants.
引用
收藏
页码:707 / 708
页数:2
相关论文
共 50 条
  • [31] Shedding light on the growth of amorphous, polymorphous, protocrystalline and microcrystalline silicon thin films
    Morral, AFI
    Cabarrocas, PRI
    THIN SOLID FILMS, 2001, 383 (1-2) : 161 - 164
  • [32] Highly controlled microcrystalline silicon growth using in-situ Raman spectroscopy
    Fink, Thomas
    Muthmann, Stefan
    Meier, Matthias
    2015 IEEE 42ND PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2015,
  • [33] Raman characterization of the structural evolution in amorphous and partially nanocrystalline hydrogenated silicon thin films prepared by PECVD
    Li, Zhi
    Li, Wei
    Jiang, Yadong
    Cai, Haihong
    Gong, Yuguang
    He, Jian
    JOURNAL OF RAMAN SPECTROSCOPY, 2011, 42 (03) : 415 - 421
  • [34] Microcrystalline silicon thin film transistors obtained by hot-wire CVD
    Puigdollers, J
    Dosev, D
    Orpella, A
    Vox, C
    Peiro, D
    Bertomeu, J
    Marsal, LF
    Pallares, J
    Andreu, J
    Alcubilla, R
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2000, 69 : 526 - 529
  • [35] Characterization of defects in polycrystalline silicon thin films using chemical etching, hydrogenation, and Raman spectroscopy
    Kitahara, Kuninori
    Ogasawara, Hiroya
    Kambara, Junji
    Kobata, Mitsunori
    Ohashi, Yasutaka
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2008, 47 (01) : 54 - 58
  • [36] Self-limiting formation and optical properties of hemispherical grains of microcrystalline silicon on an amorphous silicon film surface
    Akazawa, H
    POLYCRYSTALLINE SEMICONDUCTORS VII, PROCEEDINGS, 2003, 93 : 269 - 274
  • [37] A Comprehensive Review on Thin Film Amorphous Silicon Solar Cells
    Sreejith, S.
    Ajayan, J.
    Kollem, Sreedhar
    Sivasankari, B.
    SILICON, 2022, 14 (14) : 8277 - 8293
  • [38] Gap states and microstructure of microcrystalline silicon thin films
    Peng Wen-Bo
    Liu Shi-Yong
    Xiao Hai-Bo
    Zhang Chang-Sha
    Shi Ming-Ji
    Zeng Xiang-Bo
    Xu Yan-Yue
    Kong Guang-Lin
    Yu Yu-De
    ACTA PHYSICA SINICA, 2009, 58 (08) : 5716 - 5720
  • [39] Potential of amorphous and microcrystalline silicon solar cells
    Meier, J
    Spitznagel, J
    Kroll, U
    Bucher, C
    Fay, S
    Moriarty, T
    Shah, A
    THIN SOLID FILMS, 2004, 451 : 518 - 524
  • [40] N-type amorphous silicon-based bilayers for cost-effective thin-film silicon photovoltaic devices
    Myong, Seung Yeop
    Jeon, La Sun
    CURRENT APPLIED PHYSICS, 2014, 14 (02) : 151 - 155