A scheme based on PMU data for power quality disturbances monitoring

被引:0
作者
Mejia-Barron, Arturo [1 ]
Amezquita-Sanchez, Juan P. [1 ]
Dominguez-Gonzalez, Aurelio [1 ]
Valtierra-Rodriguez, Martin [1 ]
Razo-Hernandez, Jose R. [2 ]
Granados-Lieberman, David [2 ]
机构
[1] Univ Autonoma Queretaro, Fac Ingn, ENAP RG, Campus San Juan del Rio,Rio Moctezuma 249, San Juan Del Rio 76807, Queretaro, Mexico
[2] Inst Tecnol Super Irapuato ITESI, Dept Ingn Electromecan, CA Fuentes Alternas & Calidad Energia Elect, ENAP RG, Carr Irapuato Silao Km 12-5, Guanajuato 36821, Mexico
来源
IECON 2017 - 43RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY | 2017年
关键词
electric disturbances; phasor measurement unit; power quality; neural network; CLASSIFICATION;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Power quality (PQ) monitoring has attracted the interest of many researchers around the world. PQ disturbances (PQDs) such as sags, swells, interruptions, harmonics, notching, spikes, and oscillatory transients, among others, have to be detected and classified in order to apply a proper solution. For their detection and classification, many methodologies in literature have been proposed, where a signal processing technique and a pattern recognition algorithm are typically used. In this work, a new methodology for detection and classification of PQDs using a phasor measurement unit (PMU)-based scheme is presented. In general, the processing of voltage or current signals is carried out using a phasor estimation model (algorithm within a PMU), whereas the classification task is performed by threshold-based rules and an artificial neural network. The proposal is validated using synthetic signals. Then, it is tested using real measured signals. Results demonstrate its effectiveness and usefulness.
引用
收藏
页码:3270 / 3275
页数:6
相关论文
共 18 条
[1]   Characterization of power quality disturbances using hybrid technique of linear Kalman filter and fuzzy-expert system [J].
Abdelsalam, Abdelazeem A. ;
Eldesouky, Azza A. ;
Sallam, Abdelhay A. .
ELECTRIC POWER SYSTEMS RESEARCH, 2012, 83 (01) :41-50
[2]  
[Anonymous], 2011, C3711812011 IEEE
[3]  
[Anonymous], 2009, IEEE STD 11592009
[4]   A virtual measurement instrument for electrical power quality analysis using wavelets [J].
Barros, Julio ;
de Apraiz, Matilde ;
Diego, Ramon I. .
MEASUREMENT, 2009, 42 (02) :298-307
[5]  
Bollen M.H., 2006, SIGNAL PROCESSING PO, V30
[6]   Power quality analysis using S-Transform [J].
Dash, PK ;
Panigrahi, BK ;
Panda, G .
IEEE TRANSACTIONS ON POWER DELIVERY, 2003, 18 (02) :406-411
[7]   Detection and classification of voltage disturbances using a Fuzzy-ARTMAP-wavelet network [J].
Decanini, Jose G. M. S. ;
Tonelli-Neto, Mauro S. ;
Malange, Fernando C. V. ;
Minussi, Carlos R. .
ELECTRIC POWER SYSTEMS RESEARCH, 2011, 81 (12) :2057-2065
[8]   Techniques and methodologies for power quality analysis and disturbances classification in power systems: a review [J].
Granados-Lieberman, D. ;
Romero-Troncoso, R. J. ;
Osornio-Rios, R. A. ;
Garcia-Perez, A. ;
Cabal-Yepez, E. .
IET GENERATION TRANSMISSION & DISTRIBUTION, 2011, 5 (04) :519-529
[9]   A Hilbert Transform-Based Smart Sensor for Detection, Classification, and Quantification of Power Quality Disturbances [J].
Granados-Lieberman, David ;
Valtierra-Rodriguez, Martin ;
Morales-Hernandez, Luis A. ;
Romero-Troncoso, Rene J. ;
Osornio-Rios, Roque A. .
SENSORS, 2013, 13 (05) :5507-5527
[10]  
Haykin S., 2004, NEURAL NETWORKS COMP, V2, P41, DOI DOI 10.1017/S0269888998214044