Vision-based detection and prediction of equipment heat gains in commercial office buildings using a deep learning method

被引:44
|
作者
Wei, Shuangyu [1 ]
Tien, Paige Wenbin [1 ]
Calautit, John Kaiser [1 ]
Wu, Yupeng [1 ]
Boukhanouf, Rabah [1 ]
机构
[1] Univ Nottingham, Dept Architecture & Built Environm, Nottingham NG7 2RD, England
关键词
Deep learning; Equipment detection; Energy savings; HVAC; Building energy management; ENERGY-CONSUMPTION; COMPUTER VISION; OCCUPANCY DETECTION; SMART BUILDINGS; COOLING CONTROL; SYSTEM; MODEL; DEMAND; PLUG; IDENTIFICATION;
D O I
10.1016/j.apenergy.2020.115506
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Building energy consumption accounts for a large proportion of energy use globally. Previous works have shown that a large amount of energy is wasted in under- or over-utilized spaces since typical building management systems function based on fixed or static operation schedules. While the presence of occupants and how they use equipment contribute to the internal energy demand and affect the thermal environment. Office buildings are likely to have higher cooling demands in the future due to increasing use of equipment, emphasising the need to develop systems which can better understand (and reduce) the impact of internal gains from equipment and adapt to actual requirements. This project aims to develop a deep learning-based approach which enables the detection and recognition of equipment usage and the associated heat emissions in office spaces. Subsequently, the data can be fed into building energy management systems through the formation of equipment heat gain profile; therefore, building energy usage can be effectively managed. Experiments were conducted in typical offices to generate the corresponding heat gain profiles, and then these were used in building simulation software to assess building performance. It was found that the model can perform equipment detection with an accuracy of 89.3%. While maintaining thermal comfort levels, up to 19% annual cooling energy demand reduction can be achieved by the proposed strategy when compared to that for the building managed by a static scheduled heating, ventilation and air-conditioning system, where in the studies, we focus on three types of equipment - computer, printer and kettle that are widely used in the office buildings. The findings indicate that it is feasible to use the deep learning approach to predict equipment heat emission for achieving effective building energy management therefore to reduce building energy demand.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Deep learning models for vision-based occupancy detection in high occupancy buildings
    Zhang, Wuxia
    Calautit, John
    Tien, Paige Wenbin
    Wu, Yupeng
    Wei, Shuangyu
    JOURNAL OF BUILDING ENGINEERING, 2024, 98
  • [2] Vision-Based Accident Anticipation and Detection Using Deep Learning
    Verma, Ayush
    Khari, Manju
    IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2024, 27 (03) : 22 - 29
  • [3] A coupled deep learning-based internal heat gains detection and prediction method for energy-efficient office building operation
    Wei, Shuangyu
    Tien, Paige Wenbin
    Wu, Yupeng
    Calautit, John Kaiser
    JOURNAL OF BUILDING ENGINEERING, 2022, 47
  • [4] Vision-based Analytics of Flare Stacks Using Deep Learning Detection
    Al Radi, Muaz
    Boumaraf, Said
    Karki, Hamad
    Dias, Jorge
    Werghi, Naoufel
    Javed, Sajid
    2023 21ST INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS, ICAR, 2023, : 467 - 472
  • [5] Vision-Based Traffic Conflict Detection Using Trajectory Learning and Prediction
    Sun, Zongyuan
    Chen, Yuren
    Wang, Pin
    Fang, Shouen
    Tang, Boming
    IEEE ACCESS, 2021, 9 : 34558 - 34569
  • [6] A Machine Vision-based Realtime Anomaly Detection Method for Industrial Products Using Deep Learning
    Jiang, Yu
    Wang, Wei
    Zhao, Chunhui
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 4842 - 4847
  • [7] Machine Vision-based Defect Detection Using Deep Learning Algorithm
    Kim, Dae-Hyun
    Boo, Seung Bin
    Hong, Hyeon Cheol
    Yeo, Won Gu
    Lee, Nam Yong
    JOURNAL OF THE KOREAN SOCIETY FOR NONDESTRUCTIVE TESTING, 2020, 40 (01) : 47 - 52
  • [8] Adaptive Deep Learning for a Vision-based Fall Detection
    Doulamis, Anastasios
    Doulamis, Nikolaos
    11TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS (PETRA 2018), 2018, : 558 - 565
  • [9] Deep Learning and Vision-Based Early Drowning Detection
    Shatnawi, Maad
    Albreiki, Frdoos
    Alkhoori, Ashwaq
    Alhebshi, Mariam
    INFORMATION, 2023, 14 (01)
  • [10] A knowledge augmented deep learning method for vision-based yarn contour detection
    Xu, Chuqiao
    Wang, Junliang
    Tao, Jing
    Zhang, Jie
    Zheng, Pai
    JOURNAL OF MANUFACTURING SYSTEMS, 2022, 63 : 317 - 328