Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production

被引:243
作者
Pang, Huan [1 ,2 ]
Wei, Chengzhen [1 ]
Li, Xuexue [1 ]
Li, Guochang [1 ]
Ma, Yahui [1 ]
Li, Sujuan [1 ]
Chen, Jing [1 ]
Zhang, Jiangshan [1 ]
机构
[1] Anyang Normal Univ, Coll Chem & Chem Engn, Anyang 455000, Henan, Peoples R China
[2] Nanjing Univ, State Key Lab Coordinat Chem, Nanjing 210093, Jiangsu, Peoples R China
来源
SCIENTIFIC REPORTS | 2014年 / 4卷
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
HYDROGEN-PRODUCTION; NICKEL; EVOLUTION; NANORODS; CDS; NANOPARTICLES; PERFORMANCE; CAPACITANCE; NANOWIRES; FILMS;
D O I
10.1038/srep03577
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Uniform NiS2 nanocubes are successfully synthesized with a microwave-assisted method. Interestingly, NiS2 nanocubes, nanospheres and nanoparticles are obtained by controlling microwave reaction time. NiS2 nanomaterials are primarily applied to supercapacitors and cocatalytic enhancing photocatalytic H-2 production. Different morphologies of NiS2 nanostructures show different electrochemical and cocatalytic enhancing H-2 production activities. Benefited novel nanostructures, NiS2 nanocube electrodes show a large specific capacitance (695 F g(-1) at 1.25 A g(-1)) and excellent cycling performance (the retention 93.4% of initial specific capacitance after 3000 cycles). More importantly, NiS2 nanospheres show highly cocatalytic enhancing photocatalytic for H-2 evolution, in which the photocatalytic H-2 production is up to 3400 mu mol during 12 hours under irradiation of visible light (lambda>420 nm) with an average H-2 production rate of 283 mu mol h(-1).
引用
收藏
页数:8
相关论文
共 41 条
[1]   Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible [J].
Bao, Ningzhong ;
Shen, Liming ;
Takata, Tsuyoshi ;
Domen, Kazunari .
CHEMISTRY OF MATERIALS, 2008, 20 (01) :110-117
[2]   Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes [J].
Cao, Chang-Yan ;
Guo, Wei ;
Cui, Zhi-Min ;
Song, Wei-Guo ;
Cai, Wei .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (09) :3204-3209
[3]   Resonant photoemission study of pyrite-type NiS2, CoS2 and FeS2 [J].
Fujimori, A ;
Mamiya, K ;
Mizokawa, T ;
Miyadai, T ;
Sekiguchi, T ;
Takahashi, H ;
Mori, N ;
Suga, S .
PHYSICAL REVIEW B, 1996, 54 (23) :16329-16332
[4]   Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices [J].
Gao, Min-Rui ;
Xu, Yun-Fei ;
Jiang, Jun ;
Yu, Shu-Hong .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (07) :2986-3017
[5]   Solventless synthesis of nickel sulfide nanorods and triangular nanoprisms [J].
Ghezelbash, A ;
Sigman, MB ;
Korgel, BA .
NANO LETTERS, 2004, 4 (04) :537-542
[6]   Hybrid structure of cobalt monoxide nanowire @ nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor [J].
Guan, Cao ;
Liu, Jinping ;
Cheng, Chuanwei ;
Li, Hongxing ;
Li, Xianglin ;
Zhou, Weiwei ;
Zhang, Hua ;
Fan, Hong Jin .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (11) :4496-4499
[7]   Nickel-complexes with a mixed-donor ligand for photocatalytic hydrogen evolution from aqueous solutions under visible light [J].
Han, Jianyu ;
Zhang, Wei ;
Zhou, Tianhua ;
Wang, Xin ;
Xu, Rong .
RSC ADVANCES, 2012, 2 (22) :8293-8296
[8]   Microwave-assisted rapid facile "Green" synthesis of uniform silver nanoparticles: Self-assembly into multilayered films and their optical properties [J].
Hu, Bo ;
Wang, Shang-Bing ;
Wang, Kan ;
Zhang, Meng ;
Yu, Shu-Hong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (30) :11169-11174
[9]   Rapid mass production of hierarchically porous ZnIn2S4 submicrospheres via a microwave-solvothermal process [J].
Hu, Xianluo ;
Yu, Jimmy C. ;
Gong, Jingming ;
Li, Quan .
CRYSTAL GROWTH & DESIGN, 2007, 7 (12) :2444-2448
[10]   Synthesis of novel nickel sulfide submicrometer hollow spheres [J].
Hu, Y ;
Chen, JF ;
Chen, WM ;
Lin, XH ;
Li, XL .
ADVANCED MATERIALS, 2003, 15 (09) :726-729