Evolution equations beyond one loop from conformal symmetry

被引:29
作者
Braun, V. M. [1 ]
Manashov, A. N. [1 ,2 ]
机构
[1] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany
[2] St Petersburg State Univ, Dept Theoret Phys, St Petersburg 199034, Russia
来源
EUROPEAN PHYSICAL JOURNAL C | 2013年 / 73卷 / 08期
关键词
ANOMALOUS DIMENSIONS; COMPOSITE-OPERATORS; CREWTHER RELATION; ADLER FUNCTION; SUM-RULES; ANNIHILATION; CONSTRAINTS; SPECTRUM;
D O I
10.1140/epjc/s10052-013-2544-1
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study implications of exact conformal invariance of scalar quantum field theories at the critical point in non-integer dimensions for the evolution kernels of the light-ray operators in physical (integer) dimensions. We demonstrate that all constraints due the conformal symmetry are encoded in the form of the generators of the collinear sl(2) subgroup. Two of them, S- and S-0, can be fixed at all loops in terms of the evolution kernel, while the generator of special conformal transformations, S+, receives nontrivial corrections which can be calculated order by order in perturbation theory. Provided that the generator S+ is known at the l - 1 loop order, one can fix the evolution kernel in physical dimension to the l-loop accuracy up to terms that are invariant with respect to the tree-level generators. The invariant parts can easily be restored from the anomalous dimensions. The method is illustrated on two examples: The O(n)-symmetric phi(4) theory in d = 4 to the three-loop accuracy, and the su(n) matrix phi(3) theory in d = 6 to the two-loop accuracy. We expect that the same technique can be used in gauge theories e.g. in QCD.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 26 条
[1]  
[Anonymous], 1995, NUCL PHYS B, V453, P777
[2]  
[Anonymous], 1998, EUR PHYS J C, V2, P569
[3]   Adler function, sum rules and Crewther relation of order O(αs4): The singlet case [J].
Baikov, P. A. ;
Chetyrkin, K. G. ;
Kuehn, J. H. ;
Rittinger, J. .
PHYSICS LETTERS B, 2012, 714 (01) :62-65
[4]   Adler Function, Bjorken Sum Rule, and the Crewther Relation to Order αs4 in a General Gauge Theory [J].
Baikov, P. A. ;
Chetyrkin, K. G. ;
Kuehn, J. H. .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[5]   EVOLUTION-EQUATIONS FOR QCD STRING-OPERATORS [J].
BALITSKY, II ;
BRAUN, VM .
NUCLEAR PHYSICS B, 1989, 311 (03) :541-584
[6]   ON THE PHASE-STRUCTURE OF VECTOR-LIKE GAUGE-THEORIES WITH MASSLESS FERMIONS [J].
BANKS, T ;
ZAKS, A .
NUCLEAR PHYSICS B, 1982, 196 (02) :189-204
[7]   Predictions from conformal algebra for the deeply virtual Compton scattering [J].
Belitsky, AV ;
Muller, D .
PHYSICS LETTERS B, 1998, 417 (1-2) :129-140
[8]   Next-to-leading order evolution of twist-two conformal operators: The Abelian case [J].
Belitsky, AV ;
Muller, D .
NUCLEAR PHYSICS B, 1998, 527 (1-2) :207-234
[9]   Evolution kernels of skewed parton distributions:: Method and two-loop results [J].
Belitsky, AV ;
Freund, A ;
Müller, D .
NUCLEAR PHYSICS B, 2000, 574 (1-2) :347-406
[10]   Broken conformal invariance and spectrum of anomalous dimensions in QCD [J].
Belitsky, AV ;
Müller, D .
NUCLEAR PHYSICS B, 1999, 537 (1-3) :397-442