Hermite-Hadamard type inequalities for the m- and (α, m)-logarithmically convex functions

被引:91
作者
Bai, Rui-Fang [1 ,2 ]
Qi, Feng [3 ,4 ]
Xi, Bo-Yan [1 ]
机构
[1] Inner Mongolia Univ Nationalities, Coll Math, Tongliao City 028043, Inner Mongolia, Peoples R China
[2] Seventh Sch Neijiang, Neijiang City 641000, Sichuan Provinc, Peoples R China
[3] Tianjin Polytech Univ, Coll Sci, Dept Math, Tianjin 300160, Peoples R China
[4] Henan Polytech Univ, Sch Math & Informat, Jiaozuo City 454010, Henan Province, Peoples R China
关键词
Hermite-Hadamard type inequality; m-logarithmically convex function; (alpha; m)-logarithmically convex function; DIFFERENTIABLE MAPPINGS; REAL NUMBERS; FORMULA;
D O I
10.2298/FIL1301001B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, the authors introduce concepts of m- and (alpha, m)-logarithmically convex functions and establish some Hermite-Hadamard type inequalities of these classes of functions.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 16 条
[1]  
[Anonymous], OCTOGON MATH MAG
[2]  
[Anonymous], 2012, ANALYSIS-UK
[3]  
[Anonymous], 1993, Stud. U. Babes-Bol. Mat.
[4]  
[Anonymous], 2002, TAMKANG J MATH
[5]  
[Anonymous], INT J APPL MATH SCI
[6]  
Bakula MK, 2008, J INEQUAL PURE APPL, V9
[7]   Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula [J].
Dragomir, SS ;
Agarwal, RP .
APPLIED MATHEMATICS LETTERS, 1998, 11 (05) :91-95
[8]  
Jiang W. D., 2012, ANAL MUNICH, V32, P209, DOI [10.1524/anly.2012.1161, DOI 10.1524/ANLY.2012.1161]
[9]   Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula [J].
Kirmaci, US .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 147 (01) :137-146
[10]  
Mihesan V. G., 1993, SEMINAR ON FUNCTIONA