Modeling the 2020 November 29 solar energetic particle event using EUHFORIA and iPATH models

被引:12
作者
Ding, Zheyi [1 ]
Wijsen, Nicolas [1 ,2 ,3 ]
Li, Gang [4 ,5 ]
Poedts, Stefaan [1 ,6 ]
机构
[1] Katholieke Univ Leuven, Ctr Math Plasma Astrophys, B-3001 Leuven, Belgium
[2] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA
[3] Univ Maryland, Dept Astron, College Pk, MD 20742 USA
[4] Univ Alabama Huntsville, Dept Space Sci, Huntsville, AL 35899 USA
[5] Univ Alabama Huntsville, CSPAR, Huntsville, AL 35899 USA
[6] Univ Mar Curie Sklodowska, Inst Phys, Pl M Curie Sklodowska 5, PL-20031 Lublin, Poland
基金
比利时弗兰德研究基金会;
关键词
solar wind; Sun; magnetic fields; coronal mass ejections (CMEs); acceleration of particles; particle emission; EJECTION-DRIVEN SHOCKS; HYDROMAGNETIC WAVE EXCITATION; CORONAL MASS EJECTIONS; CIRCLE-DOT-IS; SEP EVENT; PROTON ACCELERATION; ION-ACCELERATION; TRANSPORT; SIMULATIONS; PROPAGATION;
D O I
10.1051/0004-6361/202244732
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Aims. We present the implementation of a coupling between EUropean Heliospheric FORcasting Information Asset (EUHFORIA) and improved Particle Acceleration and Transport in the Heliosphere (iPATH) models. In this work, we simulate the widespread solar energetic particle (SEP) event of 2020 November 29 and compare the simulated time-intensity profiles with measurements at Parker Solar Probe (PSP), the Solar Terrestrial Relations Observatory (STEREO)-A, SOlar and Heliospheric Observatory (SOHO), and Solar Orbiter. We focus on the influence of the history of shock acceleration on the varying SEP time-intensity profiles and investigate the underlying causes in the origin of this widespread SEP event.Methods. We simulated a magnetized coronal mass ejection (CME) propagating in the data-driven solar wind with the EUHFORIA code. The CME was initiated by using the linear force-free spheromak module of EUHFORIA. The shock parameters and a 3D shell structure were computed from EUHFORIA as inputs for the iPATH model. Within the iPATH model, the steady-state solution of particle distribution assuming diffuse shock acceleration is obtained at the shock front. The subsequent SEP transport is described by the focused transport equation using the backward stochastic differential equation method with perpendicular diffusion included.Results. We examined the temporal evolution of shock parameters and particle fluxes during this event and we find that adopting a realistic solar wind background can significantly impact the expansion of the shock and, consequently, the shock parameters. Time-intensity profiles with an energetic storm particle event at PSP are well reproduced from the simulations. In addition, the simulated and observed time-intensity profiles of protons show a similar two-phase enhancement at STA. These results illustrate that modeling a shock using a realistic solar wind is crucial in determining the characteristics of SEP events. The decay phase of the modeled time-intensity profiles at Earth is in good agreement with the observations, indicating the importance of perpendicular diffusion in widespread SEP events. Taking into account the possible large curved magnetic field line connecting to Solar Orbiter, the modeled time-intensity profiles show a good agreement with the observation. We suggest that the broadly distorted magnetic field lines, which are due to a stream interaction region, may be a key factor in helping to improve our understanding of the observed SEPs at Solar Orbiter for this event.
引用
收藏
页数:13
相关论文
共 75 条
  • [41] Energetic Electron Observations by Parker Solar Probe/IS⊙IS during the First Widespread SEP Event of Solar Cycle 25 on 2020 November 29
    Mitchell, J. G.
    De Nolfo, G. A.
    Hill, M. E.
    Christian, E. R.
    Richardson, I. G.
    McComas, D. J.
    McNutt, R. L., Jr.
    Mitchell, D. G.
    Schwadron, N. A.
    Bale, S. D.
    Giacalone, J.
    Joyce, C. J.
    Niehof, J. T.
    Szalay, J. R.
    [J]. ASTROPHYSICAL JOURNAL, 2021, 919 (02)
  • [42] Direct First Parker Solar Probe Observation of the Interaction of Two Successive Interplanetary Coronal Mass Ejections in 2020 November
    Nieves-Chinchilla, Teresa
    Alzate, Nathalia
    Cremades, Hebe
    Rodriguez-Garcia, Laura
    Dos Santos, Luiz F. G.
    Narock, Ayris
    Xie, Hong
    Szabo, Adam
    Palmerio, Erika
    Krupar, Vratislav
    Pulupa, Marc
    Lario, David
    Stevens, Michael L.
    Wilson, Lynn B., III
    Kwon, Ryun-Young
    Mays, M. Leila
    St Cyr, O. Chris
    Hess, Phillip
    Reeves, Katharine K.
    Seaton, Daniel B.
    Niembro, Tatiana
    Bale, Stuart D.
    Kasper, Justin C.
    [J]. ASTROPHYSICAL JOURNAL, 2022, 930 (01)
  • [43] Numerical simulation of the 12 May 1997 interplanetary CME event
    Odstrcil, D
    Riley, P
    Zhao, XP
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2004, 109 (A2)
  • [44] Propagation of an interplanetary shock along the heliospheric plasma sheet
    Odstrcil, D
    Dryer, M
    Smith, Z
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1996, 101 (A9) : 19973 - 19986
  • [45] Palmerio E., 2022, SPACE WEATHER, V20, pe2021SW002993
  • [46] THE SOURCE REGIONS OF SOLAR ENERGETIC PARTICLES DETECTED BY WIDELY SEPARATED SPACECRAFT
    Park, Jinhye
    Innes, D. E.
    Bucik, R.
    Moon, Y. -J.
    [J]. ASTROPHYSICAL JOURNAL, 2013, 779 (02)
  • [47] EUropean Heliospheric FORecasting Information Asset 2.0
    Poedts, Stefaan
    Lani, Andrea
    Scolini, Camilla
    Verbeke, Christine
    Wijsen, Nicolas
    Lapenta, Giovanni
    Laperre, Brecht
    Millas, Dimitrios
    Innocenti, Maria Elena
    Chane, Emmanuel
    Baratashvili, Tinatin
    Samara, Evangelia
    Van der Linden, Ronald
    Rodriguez, Luciano
    Vanlommel, Petra
    Vainio, Rami
    Afanasiev, Alexandr
    Kilpua, Emilia
    Pomoell, Jens
    Sarkar, Ranadeep
    Aran, Angels
    Sanahuja, Blai
    Paredes, Josep M.
    Clarke, Ellen
    Thomson, Alan
    Rouilard, Alexis
    Pinto, Rui F.
    Marchaudon, Aurelie
    Blelly, Pierre-Louis
    Gorce, Blandine
    Plotnikov, Illya
    Kouloumvakos, Athanasis
    Heber, Bernd
    Herbst, Konstantin
    Kochanov, Andrey
    Raeder, Joachim
    Depauw, Jan
    [J]. JOURNAL OF SPACE WEATHER AND SPACE CLIMATE, 2020, 10
  • [48] EUHFORIA: European heliospheric forecasting information asset
    Pomoell, Jens
    Poedts, Stefaan
    [J]. JOURNAL OF SPACE WEATHER AND SPACE CLIMATE, 2018, 8
  • [49] Particle acceleration at the Sun and in the heliosphere
    Reames, DV
    [J]. SPACE SCIENCE REVIEWS, 1999, 90 (3-4) : 413 - 491
  • [50] Particle acceleration and coronal mass ejection driven shocks: Shocks of arbitrary strength
    Rice, WKM
    Zank, GP
    Li, G
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2003, 108 (A10)