共 50 条
Fast solution methods for space-fractional diffusion equations
被引:48
作者:
Wang, Hong
[1
,2
]
Du, Ning
[1
]
机构:
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[2] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
基金:
中国国家自然科学基金;
美国国家科学基金会;
关键词:
Fractional diffusion equation;
Toeplitz matrix;
Levinson method;
Superfast method;
Fast Fourier transform;
FINITE-DIFFERENCE APPROXIMATIONS;
SUPERFAST SOLUTION;
DISPERSION;
ALGORITHM;
D O I:
10.1016/j.cam.2013.06.002
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We develop fast solution methods for a shifted Grunwald finite difference method for steady-state and time-dependent space-fractional diffusion equations. These methods reduce the memory requirement of the finite difference scheme from O(N-2) to O(N) and the computational complexity from O(N-3) to O(N log(2) N). Preliminary numerical example runs show the utility of these methods over the traditional direct solvers of the finite difference methods, in terms of computational cost and memory requirements. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:376 / 383
页数:8
相关论文
共 50 条