Fast solution methods for space-fractional diffusion equations

被引:48
作者
Wang, Hong [1 ,2 ]
Du, Ning [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[2] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Fractional diffusion equation; Toeplitz matrix; Levinson method; Superfast method; Fast Fourier transform; FINITE-DIFFERENCE APPROXIMATIONS; SUPERFAST SOLUTION; DISPERSION; ALGORITHM;
D O I
10.1016/j.cam.2013.06.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop fast solution methods for a shifted Grunwald finite difference method for steady-state and time-dependent space-fractional diffusion equations. These methods reduce the memory requirement of the finite difference scheme from O(N-2) to O(N) and the computational complexity from O(N-3) to O(N log(2) N). Preliminary numerical example runs show the utility of these methods over the traditional direct solvers of the finite difference methods, in terms of computational cost and memory requirements. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:376 / 383
页数:8
相关论文
共 50 条
[21]   Fast solution algorithms for exponentially tempered fractional diffusion equations [J].
Lei, Siu-Long ;
Fan, Daoying ;
Chen, Xu .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (04) :1301-1323
[22]   Dominant Hermitian splitting iteration method for discrete space-fractional diffusion equations [J].
Lu, Kang-Ya ;
Xie, Dong-Xiu ;
Chen, Fang ;
Muratova, Galina, V .
APPLIED NUMERICAL MATHEMATICS, 2021, 164 :15-28
[23]   Fast Numerical Contour Integral Method for Fractional Diffusion Equations [J].
Pang, Hong-Kui ;
Sun, Hai-Wei .
JOURNAL OF SCIENTIFIC COMPUTING, 2016, 66 (01) :41-66
[24]   Spectral solutions for diffusion equations of Riesz distributed-order space-fractional [J].
Abdelkawy, Mohamed A. ;
Al-Shomrani, Mohamed M. .
ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (02) :1045-1054
[25]   A fast finite difference method for three-dimensional time-dependent space-fractional diffusion equations and its efficient implementation [J].
Wang, Hong ;
Du, Ning .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 253 :50-63
[26]   A preconditioned fast finite volume method for two-dimensional conservative space-fractional diffusion equations on non-uniform meshes [J].
Xu, Yuan ;
Lei, Siu-Long ;
Sun, Hai-Wei ;
Fang, Zhi-Wei .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2025, 196 :30-48
[27]   Fast numerical solution for fractional diffusion equations by exponential quadrature rule [J].
Zhang, Lu ;
Sun, Hai-Wei ;
Pang, Hong-Kui .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 299 :130-143
[28]   A fast preconditioning iterative method for solving the discretized second-order space-fractional advection-diffusion equations [J].
Tang, Shi-Ping ;
Huang, Yu-Mei .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 438
[29]   A FAST FINITE ELEMENT METHOD FOR SPACE-FRACTIONAL DISPERSION EQUATIONS ON BOUNDED DOMAINS IN R2 [J].
Du, Ning ;
Wang, Hong .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (03) :A1614-A1635
[30]   Preconditioned iterative methods for space-time fractional advection-diffusion equations [J].
Zhao, Zhi ;
Jin, Xiao-Qing ;
Lin, Matthew M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 319 :266-279