Ground state solutions for nonlinear fractional Schrodinger equations in RN

被引:441
作者
Secchi, Simone [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Roberto Cozzi 53, I-20125 Milan, Italy
关键词
EXISTENCE;
D O I
10.1063/1.4793990
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct solutions to a class of Schrodinger equations involving the fractional Laplacian. Our approach is variational in nature, and based on minimization on the Nehari manifold. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793990]
引用
收藏
页数:17
相关论文
共 30 条
[1]   Semiclassical states of nonlinear Schrodinger equations [J].
Ambrosetti, A ;
Badiale, M ;
Cingolani, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 140 (03) :285-300
[2]   Multiplicity results for some nonlinear Schrodinger equations with potentials [J].
Ambrosetti, A ;
Malchiodi, A ;
Secchi, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 159 (03) :253-271
[3]  
Ambrosetti A., 2006, PROGR MATH, V240
[4]  
[Anonymous], 1997, Adv. Diff. Equats
[5]  
[Anonymous], ANN MATH IN PRESS
[6]   On the Schrodinger Equation in RN under the Effect of a General Nonlinear Term [J].
Azzollini, A. ;
Pomponio, A. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (03) :1361-1378
[7]   On some critical problems for the fractional Laplacian operator [J].
Barrios, B. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) :6133-6162
[8]  
Berti M., 1999, ANN MAT PUR APPL, VCLXXVI, P323
[9]  
Cabre X., 2010, E PRINT ARXIV1012 08
[10]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260