Conservation laws of the Bretherton Equation

被引:7
作者
Kara, A. H. [1 ]
Triki, Houria [2 ]
Biswas, Anjan [3 ]
机构
[1] Univ Witwatersrand, Sch Math, ZA-2050 Johannesburg, South Africa
[2] Badji Mokhtar Univ, Fac Sci, Dept Phys, Radiat Phys Lab, Annaba, Algeria
[3] Delaware State Univ, Dept Math Sci, Dover, DE 19901 USA
来源
APPLIED MATHEMATICS & INFORMATION SCIENCES | 2013年 / 7卷 / 03期
关键词
Conservation laws; Bretherton equation;
D O I
10.12785/amis/070305
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper obtains the conservation laws of the Bretherton equation that is considered with dual-power law nonlinearity. The multiplier approach is used to extract several conserved densities of this equation. Finally, the conserved quantities are computed by using the 1-soliton solution that has been obtained earlier.
引用
收藏
页码:877 / 879
页数:3
相关论文
共 15 条
[1]  
Akbar M. Ali., 2012, COMMUNICATIONS THEOR, V57, P173
[2]  
Alquran MT, 2012, APPL MATH INFORM SCI, V6, P85
[3]  
El-Sabbagh MF, 2008, APPL MATH INFORM SCI, V2, P31
[4]  
Esfahani A., 2011, COMMUNICATIONS THEOR, V55, P381
[5]  
Godefroy A. D., 2005, ELECT J DIFFERENTIAL, V2005, P1
[6]   Computation of conservation laws for nonlinear lattices [J].
Göktas, U ;
Hereman, W .
PHYSICA D, 1998, 123 (1-4) :425-436
[8]   Exact solutions of the generalized Bretherton equation [J].
Kudryashov, Nikolai A. ;
Sinelshchikov, Dmitry I. ;
Demina, Maria V. .
PHYSICS LETTERS A, 2011, 375 (07) :1074-1079
[9]  
Mitropolskii Y. A., 1998, UKR MATH J, V50, P58
[10]  
Noor MA, 2010, APPL MATH INFORM SCI, V4, P227