Low-Sample Flow Secondary Electrospray Ionization: Improving Vapor Ionization Efficiency

被引:33
作者
Vidal-de-Miguel, G. [1 ]
Macia, M. [1 ]
Pinacho, P. [1 ]
Blanco, J. [1 ]
机构
[1] Univ Valladolid, Energy & Fluid Mech Engn Dept, E-47002 Valladolid, Spain
关键词
ION MOBILITY SPECTROMETRY; MASS-SPECTROMETRY; GAS-CHROMATOGRAPHY; PHASE; EVAPORATION; VOLATILES;
D O I
10.1021/ac3005378
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In secondary electrospray ionization (SESI) systems, gaseous analytes exposed to an elecrospray plume become ionized after charge is transferred from the charging electrosprayed particles to the sample species. Current SESI systems have shown a certain potential. However, their ionization efficiency is limited by space charge repulsion and by the high sample flows required to prevent vapor dilution. As a result, they have a poor conversion ratio of vapor into ions. We have developed and tested a new SESI configuration, termed low-flow SESI, that permits the reduction of the required sample flows. Although the ion to vapor concentration ratio is limited, the ionic flow to sample vapor flow ratio theoretically is not. The new ionizer is coupled to a planar differential mobility analyzer (DMA) and requires only 0.2 Ipm of vapor sample flow to produce 3.5 Ipm of ionic flow. The achieved ionization efficiency is 1/700 (one ion for every 700 molecules) for TNT and, thus, compared with previous SESI ionizers coupled with atmospheric pressure ionization-mass spectrometry (API-MS) (Mesonero, E.; Sillero, J. A.; Hernandez, M.; Fernandez de la Mora, J. Philadelphia PA, 2009) has been improved by a large factor of at least 50-100 (our measurements indicate 70). The new ionizer coupled with the planar DMA and a triple quadrupole mass spectrometer (ABSciex API5000) requires only 20 fg (50 million molecules) to produce a discernible signal after mobility and MS2 analysis.
引用
收藏
页码:8475 / 8479
页数:5
相关论文
共 40 条
[21]   Electrospray ionization of volatiles in breath [J].
Martinez-Lozano, P. ;
Fernandez de la Mora, J. .
INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2007, 265 (01) :68-72
[22]   Secondary electrospray ionization-mass spectrometry: breath study on a control group [J].
Martinez-Lozano, P. ;
Zingaro, L. ;
Finiguerra, A. ;
Cristoni, S. .
JOURNAL OF BREATH RESEARCH, 2011, 5 (01)
[23]   Direct Analysis of Fatty Acid Vapors in Breath by Electrospray Ionization and Atmospheric Pressure Ionization-Mass Spectrometry [J].
Martinez-Lozano, Pablo ;
de la Mora, Juan Fernandez .
ANALYTICAL CHEMISTRY, 2008, 80 (21) :8210-8215
[24]   Differential mobility analysis-mass spectrometry coupled to XCMS algorithm as a novel analytical platform for metabolic profiling [J].
Martinez-Lozano, Pablo ;
Criado, Ernesto ;
Vidal, Guillermo ;
Cristoni, Simone ;
Franzoso, Francesco ;
Piatti, Mara ;
Brambilla, Paolo .
METABOLOMICS, 2013, 9 (01) :S30-S43
[25]   On-line Detection of Human Skin Vapors [J].
Martinez-Lozano, Pablo ;
de la Mora, Juan Fernandez .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2009, 20 (06) :1060-1063
[26]   Mass spectrometric study of cutaneous volatiles by secondary electrospray ionization [J].
Martinez-Lozano, Pablo .
INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2009, 282 (03) :128-132
[27]   Secondary Electrospray Ionization (SESI) of Ambient Vapors for Explosive Detection at Concentrations Below Parts Per Trillion [J].
Martinez-Lozano, Pablo ;
Rus, Juan ;
Fernandez de la Mora, Gonzalo ;
Hernandez, Marta ;
Fernandez de la Mora, Juan .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2009, 20 (02) :287-294
[28]   Contribution of liquid-phase and gas-phase ionization in extractive electrospray ionization mass spectrometry of primary amines [J].
Meier, Lukas ;
Schmid, Stefan ;
Berchtold, Christian ;
Zenobi, Renato .
EUROPEAN JOURNAL OF MASS SPECTROMETRY, 2011, 17 (04) :345-351
[29]  
Mesonero E., 2009, 57 ASMS C MASS SPECT
[30]   Collision-Based Ionization: Bridging the Gap between Chemical Ionization and Aerosol Particle Diffusion Charging [J].
Premnath, Vinay ;
Oberreit, Derek ;
Hogan, Christopher J., Jr. .
AEROSOL SCIENCE AND TECHNOLOGY, 2011, 45 (06) :712-726