Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing

被引:446
作者
Kleinstiver, Benjamin P. [1 ,2 ,3 ,4 ,10 ]
Sousa, Alexander A. [1 ,2 ,3 ]
Walton, Russell T. [1 ,2 ,3 ,10 ]
Tak, Y. Esther [1 ,2 ,3 ,4 ]
Hsu, Jonathan Y. [1 ,2 ,3 ,5 ]
Clement, Kendell [1 ,2 ,4 ,6 ]
Welch, Moira M. [1 ,2 ,3 ]
Horng, Joy E. [1 ,2 ,3 ]
Malagon-Lopez, Jose [1 ,2 ,3 ,4 ,7 ,11 ]
Scarfo, Irene [2 ,8 ,9 ]
Maus, Marcela, V [2 ,8 ,9 ]
Pinello, Luca [1 ,2 ,4 ,6 ]
Aryee, Martin J. [1 ,2 ,4 ,6 ,7 ]
Joung, J. Keith [1 ,2 ,3 ,4 ]
机构
[1] Massachusetts Gen Hosp, Mol Pathol Unit, Charlestown, MA 02129 USA
[2] Massachusetts Gen Hosp, Ctr Canc Res, Charlestown, MA 02129 USA
[3] Massachusetts Gen Hosp, Ctr Computat & Integrat Biol, Charlestown, MA 02129 USA
[4] Harvard Med Sch, Dept Pathol, Boston, MA 02115 USA
[5] MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[6] Broad Inst MIT & Harvard, Cell Circuits & Epigen Program, Cambridge, MA 02142 USA
[7] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
[8] Massachusetts Gen Hosp, Canc Ctr, Cellular Immunotherapy Program, Boston, MA 02114 USA
[9] Harvard Med Sch, Boston, MA 02115 USA
[10] Massachusetts Gen Hosp, Ctr Genom Med, Boston, MA 02114 USA
[11] WuXi NextCODE, Advance Artificial Intelligence Res Lab, Cambridge, MA USA
基金
美国国家卫生研究院; 加拿大自然科学与工程研究理事会;
关键词
GENOME; CPF1; DNA; NUCLEASES; SPECIFICITIES; ENDONUCLEASE; CLEAVAGE;
D O I
10.1038/s41587-018-0011-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Broad use of CRISPR-Cas12a (formerly Cpf1) nucleases(1) has been hindered by the requirement for an extended TTTV protospacer adjacent motif (PAM)(2). To address this limitation, we engineered an enhanced Acidaminococcus sp. Cas12a variant (enAsCas12a) that has a substantially expanded targeting range, enabling targeting of many previously inaccessible PAMs. On average, enAsCas12a exhibits a twofold higher genome editing activity on sites with canonical TTTV PAMs compared to wild-type AsCas12a, and we successfully grafted a subset of mutations from enAsCas12a onto other previously described AsCas12a variants(3) to enhance their activities. enAsCas12a improves the efficiency of multiplex gene editing, endogenous gene activation and C-to-T base editing, and we engineered a high-fidelity version of enAsCas12a (enAsCas12a-HF1) to reduce off-target effects. Both enAsCas12a and enAsCas12a-HF1 function in HEK293T and primary human T cells when delivered as ribonucleoprotein (RNP) complexes. Collectively, enAsCas12a provides an optimized version of Cas12a that should enable wider application of Cas12a enzymes for gene and epigenetic editing.
引用
收藏
页码:276 / +
页数:10
相关论文
共 47 条
  • [21] Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
    Komor, Alexis C.
    Kim, Yongjoo B.
    Packer, Michael S.
    Zuris, John A.
    Liu, David R.
    [J]. NATURE, 2016, 533 (7603) : 420 - +
  • [22] Base editing with a Cpf1-cytidine deaminase fusion
    Li, Xiaosa
    Wang, Ying
    Liu, Yajing
    Yang, Bei
    Wang, Xiao
    Wei, Jia
    Lu, Zongyang
    Zhang, Yuxi
    Wu, Jing
    Huang, Xingxu
    Yang, Li
    Chen, Jia
    [J]. NATURE BIOTECHNOLOGY, 2018, 36 (04) : 324 - +
  • [23] Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection
    Liang, Xiquan
    Potter, Jason
    Kumar, Shantanu
    Zou, Yanfei
    Quintanilla, Rene
    Sridharan, Mahalakshmi
    Carte, Jason
    Chen, Wen
    Roark, Natasha
    Ranganathan, Sridhar
    Ravinder, Namritha
    Chesnut, Jonathan D.
    [J]. JOURNAL OF BIOTECHNOLOGY, 2015, 208 : 44 - 53
  • [24] Growth, Morphological, and Physiological Responses to Drought Stress in Bothriochloa ischaemum
    Liu, Ying
    Li, Peng
    Xu, Guo Ce
    Xiao, Lie
    Ren, Zong Ping
    Li, Zhan Bin
    [J]. FRONTIERS IN PLANT SCIENCE, 2017, 8 : 1 - 14
  • [25] CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing
    Moreno-Mateos, Miguel A.
    Fernandez, Juan P.
    Rouet, Romain
    Vejnar, Charles E.
    Lane, Maura A.
    Mis, Emily
    Khokha, Mustafa K.
    Doudna, Jennifer A.
    Giraldez, Antonio J.
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [26] Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems
    Nishida, Keiji
    Arazoe, Takayuki
    Yachie, Nozomu
    Banno, Satomi
    Kakimoto, Mika
    Tabata, Mayura
    Mochizuki, Masao
    Miyabe, Aya
    Araki, Michihiro
    Hara, Kiyotaka Y.
    Shimatani, Zenpei
    Kondo, Akihiko
    [J]. SCIENCE, 2016, 353 (6305)
  • [27] FLASH assembly of TALENs for high-throughput genome editing
    Reyon, Deepak
    Tsai, Shengdar Q.
    Khayter, Cyd
    Foden, Jennifer A.
    Sander, Jeffry D.
    Joung, J. Keith
    [J]. NATURE BIOTECHNOLOGY, 2012, 30 (05) : 460 - +
  • [28] Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture
    Rohland, Nadin
    Reich, David
    [J]. GENOME RESEARCH, 2012, 22 (05) : 939 - 946
  • [29] A Survey of Validation Strategies for CRISPR-Cas9 Editing
    Sentmanat, Monica F.
    Peters, Samuel T.
    Florian, Colin P.
    Connelly, Jon P.
    Pruett-Miller, Shondra M.
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [30] Diversity and evolution of class 2 CRISPR-Cas systems
    Shmakov, Sergey
    Smargon, Aaron
    Scott, David
    Cox, David
    Pyzocha, Neena
    Yan, Winston
    Abudayyeh, Omar O.
    Gootenberg, Jonathan S.
    Makarova, Kira S.
    Wolf, Yuri I.
    Severinov, Konstantin
    Zhang, Feng
    Koonin, Eugene V.
    [J]. NATURE REVIEWS MICROBIOLOGY, 2017, 15 (03) : 169 - 182