A Mazur-Ulam theorem in non-Archimedean normed spaces

被引:52
作者
Moslehian, Mohammad Sal [1 ,2 ]
Sadeghi, Ghadir [1 ,3 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Math, Mashhad 91775, Iran
[2] Ferdowsi Univ Mashhad, CEAAS, Mashhad, Iran
[3] BMRG, Mashhad, Iran
关键词
Isometry; Mazur-Ulam theorem; p-adic numbers; Non-Archimedean field; Non-Archimedean normed space; Spherically complete;
D O I
10.1016/j.na.2007.09.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The classical Mazur-Ulam theorem which states that every surjective isometry between real normed spaces is affine is not valid for non-Archimedean normed spaces. In this paper, we establish a Mazur-Ulam theorem in the non-Archimedean strictly convex normed spaces. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3405 / 3408
页数:4
相关论文
共 15 条
[1]  
ALEKSANDROV A. D., 1970, SOV MATH DOKL, V11, P116
[2]   ISOMETRIES IN NORMED SPACES [J].
BAKER, JA .
AMERICAN MATHEMATICAL MONTHLY, 1971, 78 (06) :655-&
[3]  
Khrennikov A. Y., 1997, NONARCHIMEDEAN ANAL
[4]  
Kurt H., 1897, Jahresbericht der Deutschen Mathematiker-Vereinigung, V6, P83, DOI DOI 10.1515/CRLL.1905.128.1
[5]  
Mazur S., 1932, Comptes rendus hebdomadaires des seances de l'Academie des sciences, V194, P946
[6]   STABILITY OF FUNCTIONAL EQUATIONS IN NON-ARCHIMEDEAN SPACES [J].
Moslehian, Mohammad Sal ;
Rassias, Themistocles M. .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2007, 1 (02) :325-334
[7]   STRANGE TERRAIN - NON-ARCHIMEDIAN SPACES [J].
NARICI, L ;
BECKENSTEIN, E .
AMERICAN MATHEMATICAL MONTHLY, 1981, 88 (09) :667-676
[8]   A FIXED-POINT THEOREM IN NON-ARCHIMEDEAN VECTOR-SPACES [J].
PETALAS, C ;
VIDALIS, T .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (03) :819-821
[9]   ON THE BEHAVIOR OF MAPPINGS WHICH DO NOT SATISFY HYERS-ULAM STABILITY [J].
RASSIAS, TM ;
SEMRL, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 114 (04) :989-993
[10]  
RASSIAS TM, 2001, INT J MATH MATH SCI, V25, P73