Architectural design of hierarchically ordered porous carbons for high-rate electrochemical capacitors

被引:67
作者
Chou, Tsu-chin [1 ]
Huang, Chun-hsien [1 ]
Doong, Ruey-an [1 ]
Hu, Chi-chang [2 ]
机构
[1] Natl Tsing Hua Univ, Dept Biomed Engn & Environm Sci, Hsinchu 30013, Taiwan
[2] Natl Tsing Hua Univ, Dept Chem Engn, Hsinchu 30013, Taiwan
关键词
MESOPOROUS CARBONS; HIGH-PERFORMANCE; ENERGY; ELECTRODES; ACTIVATION; NANOCOMPOSITES; TEMPLATE; STORAGE; FIBER;
D O I
10.1039/c2ta01190e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The rate capability of carbon-based electrochemical capacitors (ECs) is an important issue for applications and the three-dimensional (3D) hierarchically ordered porous carbon (HOPC) can reduce the diffusion length to improve the rate performance by the unique architectural design. In this study, a modified dual-templating strategy for architectural design of 3D HOPC as a promising electrode material for high-rate EC applications was developed by using polystyrene and Pluronic F127 as macro-and meso-porous templates, respectively. Tetraethyl orthosilicate was also added as the silica precursor, and then the solgel-derived SiO2 was removed by sodium hydroxide to form the second mesopore in HOPC (HOPC-s) for enhancing the accessible surface areas and pore structures. The HOPC-s formed by the templating strategy is composed of highly ordered macropores, macroporous windows, bimodal mesopores, and micropores, resulting in high specific surface area (1112 m(2) g(-1)), high total pore volume (1.18 cm(3) g(-1)) and an easily accessible environment for fast electrolyte ion transport. The specific capacitance of the HOPC-s electrodes can reach 316 F g(-1) at 25 mV s(-1) and maintain excellent capacitive retention at a high scan rate of 1000 mV s(-1) when compared with that of ordered mesoporous carbon (OMC-s). Electrochemical impedance spectroscopy fitting shows that the pore electrolyte resistance of HOPC-s is 3 times lower than that of OMC-s, which is attributed to the hierarchical macroporous structures and short mesoporous channels. In the symmetric capacitor test, the HOPC-s also shows excellent power capability, and the energy density of 4-10 W h kg(-1) can be maintained over the power density range of 1-14 kW kg(-1). In addition, the capacitance of HOPC-s in the polycarbonate-containing ionic liquid shows 80% retention at a scan rate of 500 mV s(-1), indicating that the unique hierarchical structure can provide efficient ion-buffering capacity for high-rate performance. These exceptional electrochemical performances clearly demonstrate that 3D HOPC-s is a superior material to solve the poor ion transport limitation, which can open an avenue to fabricate high-rate ECs with high power and energy densities for energy storage.
引用
收藏
页码:2886 / 2895
页数:10
相关论文
共 45 条
[1]   Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors [J].
Aboutalebi, Seyed Hamed ;
Chidembo, Alfred T. ;
Salari, Maryam ;
Konstantinov, Konstantin ;
Wexler, David ;
Liu, Hua Kun ;
Dou, Shi Xue .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (05) :1855-1865
[2]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[3]   Bimodal, templated mesoporous carbons for capacitor applications [J].
Banham, Dustin ;
Feng, Fangxia ;
Burt, Jason ;
Alsrayheen, Enam ;
Birss, Viola .
CARBON, 2010, 48 (04) :1056-1063
[4]   Hierarchically aminated graphene honeycombs for electrochemical capacitive energy storage [J].
Chen, Cheng-Meng ;
Zhang, Qiang ;
Zhao, Xiao-Chen ;
Zhang, Bingsen ;
Kong, Qing-Qiang ;
Yang, Mang-Guo ;
Yang, Quan-Hong ;
Wang, Mao-Zhang ;
Yang, Yong-Gang ;
Schloegl, Robert ;
Su, Dang Sheng .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (28) :14076-14084
[5]   The formation of a carbon nanotube-graphene oxide core-shell structure and its possible applications [J].
Dong, Xiaochen ;
Xing, Guichuan ;
Chan-Park, M. B. ;
Shi, Wenhui ;
Xiao, Ni ;
Wang, Jing ;
Yan, Qingyu ;
Sum, Tze Chien ;
Huang, Wei ;
Chen, Peng .
CARBON, 2011, 49 (15) :5071-5078
[6]   Ordered Multimodal Porous Carbon as Highly Efficient Counter Electrodes in Dye-Sensitized and Quantum-Dot Solar Cells [J].
Fan, Sheng-Qiang ;
Fang, Baizeng ;
Kim, Jung Ho ;
Jeong, Banseok ;
Kim, Chulwoo ;
Yu, Jong-Sung ;
Ko, Jaejung .
LANGMUIR, 2010, 26 (16) :13644-13649
[7]   Ordered multimodal porous carbon with hierarchical nanostructure for high Li storage capacity and good cycling performance [J].
Fang, Baizeng ;
Kim, Min-Sik ;
Kim, Jung Ho ;
Lim, Sinmuk ;
Yu, Jong-Sung .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (45) :10253-10259
[8]   Carbon materials for the electrochemical storage of energy in capacitors [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2001, 39 (06) :937-950
[9]   A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance [J].
Guo, Chun Xian ;
Li, Chang Ming .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (11) :4504-4507
[10]   Three-Dimensional Hierarchically Ordered Porous Carbons with Partially Graphitic Nanostructures for Electrochemical Capacitive Energy Storage [J].
Huang, Chun-Hsien ;
Zhang, Qiang ;
Chou, Tsu-Chin ;
Chen, Cheng-Meng ;
Su, Dang Sheng ;
Doong, Ruey-An .
CHEMSUSCHEM, 2012, 5 (03) :563-571