Self-Assembly of Fluorescent Hybrid Core-Shell Nanoparticles and Their Application

被引:19
|
作者
Wang, Chun [1 ]
Tang, Fu [1 ]
Wang, Xiaoyu [1 ]
Li, Lidong [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
fluorescence; polymer; core-shell nanoparticles; self-assembly; disassembly; cellular imaging; CONJUGATED POLYMER NANOPARTICLES; PARTICLES; MICELLES; SILICA; PH; FUNCTIONALIZATION; ENCAPSULATION; NANOSPHERES; HYDROGEL; COATINGS;
D O I
10.1021/acsami.5b03440
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, a fluorescent hybrid core shell nanoparticle was prepared by coating a functional polymer shell onto silver nanoparticles via a, facile one-pot method. The biomolecule poly-L-lysine (PLL) was chosen as the polymer shell and assembled onto the silver core via the amine-reactive cross-linker, 3,3'-dithiobis(sulfosuccinimidylpropionate). The fluorescent anticancer drug, doxorubicin, was incorporated into the PLL shell through the same linkage. As the cross-linker possesses a thiol-cleavable disulfide bond, disassembly of the PLL shell was observed in the presence of glutathione, leading to controllable doxorubicin release. The silver core there provided an easily modified surface to facilitate the shell coating and ensures the efficient separation of as-prepared nanoparticles from their reaction mixture through centrifugation. Cell assays show that the prepared hybrid fluorescent nanoparticles can internalize into cells possessing excellent biocompatibility prior to the release of doxorubicin, terminating cancer cells efficiently as the doxorubicin is released at the intracellular glutathione level. Such properties are important for designing smart containers for target drug delivery and cellular imaging.
引用
收藏
页码:13653 / 13658
页数:6
相关论文
共 50 条
  • [1] Hybrid Core-Shell Nanoparticles by "Plug and Play" Self-Assembly
    Pacaud, Benjamin
    Leclercq, Loic
    Dechezelles, Jean-Francois
    Nardello-Rataj, Veronique
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (67) : 17672 - 17676
  • [2] Self-Assembly of Core-Shell Hybrid Nanoparticles by Directional Crystallization of Grafted Polymers
    Nabiyan, Afshin
    Muttathukattil, Aswathy
    Tomazic, Federico
    Pretzel, David
    Schubert, Ulrich S.
    Engel, Michael
    Schacher, Felix H.
    ACS NANO, 2023, 17 (21) : 21216 - 21226
  • [3] Self-assembly of core-shell nanoparticles for self-healing materials
    Chen, Yulin
    Guan, Zhibin
    POLYMER CHEMISTRY, 2013, 4 (18) : 4885 - 4889
  • [4] Self-assembly and magnetism in core-shell microspheres
    Bizdoaca, EL
    Spasova, M
    Farle, M
    Hilgendorff, M
    Liz-Marzan, LM
    Caruso, F
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2003, 21 (04): : 1515 - 1518
  • [5] Self-assembly of novel core/shell structured blue fluorescent silica nanoparticles
    Jiao, Zheng
    Li, Zhiyong
    Zhang, Haijiao
    Pan, Dengyu
    Xu, Panpan
    JOURNAL OF CONTROLLED RELEASE, 2011, 152 : E262 - E263
  • [6] Hydrophobation and self-assembly of core-shell Au@SiO2 nanoparticles
    Qi, Youli
    Chen, Miao
    Liang, Shan
    Zhao, Jing
    Yang, Wu
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2007, 302 (1-3) : 383 - 387
  • [7] SHAPED CORE-SHELL NANOPARTICLES PREPARED FROM SELF-ASSEMBLY OF BLOCK COPOLYMERS
    Qin Jianglei
    Chen Yongming
    ACTA POLYMERICA SINICA, 2011, (06): : 572 - 585
  • [8] Self-assembly of multiferroic core-shell composites using DNA functionalized nanoparticles
    Banerjee, Atanu
    Zhang, Jitao
    Zhou, Peng
    Tuppil, Koushik
    Sreenivasulu, Gollapudi
    Qu, Hongwei
    Zhang, Tianjin
    Timilsina, Roshan
    Chavez, Ferman A.
    Srinivasan, Gopalan
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2018, 460 : 424 - 431
  • [9] Self-Assembly of Crystalline Structures of Magnetic Core-Shell Nanoparticles for Fabrication of Nanostructured Materials
    Xue, Xiaozheng
    Wang, Jianchao
    Furlani, Edward P.
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (40) : 22515 - 22524
  • [10] Core-shell polymeric nanoparticles by self-assembly and step-growth polymerization.
    Knauss, DM
    Clark, SL
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 223 : D22 - D22