Progress on tilted axis cranking covariant density functional theory for nuclear magnetic and antimagnetic rotation

被引:211
作者
Meng, Jie [1 ,2 ,3 ]
Peng, Jing [4 ]
Zhang, Shuang-Quan [1 ]
Zhao, Peng-Wei [1 ]
机构
[1] Peking Univ, Sch Phys, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China
[2] Beihang Univ, Sch Phys & Nucl Energy Engn, Beijing 100191, Peoples R China
[3] Univ Stellenbosch, Dept Phys, ZA-7600 Stellenbosch, South Africa
[4] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
关键词
covariant density functional theory; tilted axis cranking; magnetic rotation; antimagnetic rotation; MEAN-FIELD THEORY; GROUND-STATE PROPERTIES; SELF-CONSISTENT CALCULATION; OSCILLATOR WAVE FUNCTIONS; HARTREE-BOGOLIUBOV THEORY; POINT COUPLING MODEL; SHEARS MECHANISM; FINITE NUCLEI; DIPOLE BANDS; RELATIVISTIC DESCRIPTION;
D O I
10.1007/s11467-013-0287-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Magnetic rotation and antimagnetic rotation are exotic rotational phenomena observed in weakly deformed or near-spherical nuclei, which are respectively interpreted in terms of the shears mechanism and two shearslike mechanism. Since their observations, magnetic rotation and antimagnetic rotation phenomena have been mainly investigated in the framework of tilted axis cranking based on the pairing plus quadrupole model. For the last decades, the covariant density functional theory and its extension have been proved to be successful in describing series of nuclear ground-states and excited states properties, including the binding energies, radii, single-particle spectra, resonance states, halo phenomena, magnetic moments, magnetic rotation, low-lying excitations, shape phase transitions, collective rotation and vibrations, etc. This review will mainly focus on the tilted axis cranking covariant density functional theory and its application for the magnetic rotation and antimagnetic rotation phenomena.
引用
收藏
页码:55 / 79
页数:25
相关论文
共 141 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS, V55
[2]   Cranked relativistic Hartree-Bogoliubov theory:: Superdeformed bands in the A∼190 region -: art. no. 051303 [J].
Afanasjev, AV ;
König, J ;
Ring, P .
PHYSICAL REVIEW C, 1999, 60 (05) :5
[3]   Bandcrossing of magnetic rotation bands in 137Pr [J].
Agarwal, Priyanka ;
Kumar, Suresh ;
Singh, Sukhjeet ;
Sinha, Rishi Kumar ;
Dhal, Anukul ;
Muralithar, S. ;
Singh, R. P. ;
Madhavan, N. ;
Kumar, Rakesh ;
Bhowmik, R. K. ;
Malik, S. S. ;
Pancholi, S. C. ;
Chaturvedi, L. ;
Jain, H. C. ;
Jain, A. K. .
PHYSICAL REVIEW C, 2007, 76 (02)
[4]   Table of magnetic dipole rotational bands [J].
Amita ;
Jian, AK ;
Singh, B .
ATOMIC DATA AND NUCLEAR DATA TABLES, 2000, 74 (02) :283-331
[5]   PSEUDO LS COUPLING AND PSEUDO SU3 COUPLING SCHEMES [J].
ARIMA, A ;
HARVEY, M ;
SHIMIZU, K .
PHYSICS LETTERS B, 1969, B 30 (08) :517-&
[6]   A short history of nuclear magnetic moments and GT transitions [J].
Arima, Akito .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2011, 54 (02) :188-193
[7]   The AME2003 atomic mass evaluation (II). Tables, graphs and references [J].
Audi, G ;
Wapstra, AH ;
Thibault, C .
NUCLEAR PHYSICS A, 2003, 729 (01) :337-676
[8]   SHEARS BANDS IN PB199 AND PB-200 [J].
BALDSIEFEN, G ;
HUBEL, H ;
KORTEN, W ;
MEHTA, D ;
NENOFF, N ;
RAO, BVT ;
WILLSAU, P ;
GRAWE, H ;
HEESE, J ;
KLUGE, H ;
MAIER, KH ;
SCHUBART, R ;
FRAUENDORF, S ;
MAIER, HJ .
NUCLEAR PHYSICS A, 1994, 574 (03) :521-558
[9]   OBLATE COLLECTIVE BANDS IN PB-199 AND PB-200 [J].
BALDSIEFEN, G ;
HUBEL, H ;
MEHTA, D ;
RAO, BVT ;
BIRKENTAL, U ;
FROHLINGSDORF, G ;
NEFFGEN, M ;
NENOFF, N ;
PANCHOLI, SC ;
SINGH, N ;
SCHMITZ, W ;
THEINE, K ;
WILLSAU, P ;
GRAWE, H ;
HEESE, J ;
KLUGE, H ;
MAIER, KH ;
SCHRAMM, M ;
SCHUBART, R ;
MAIER, HJ .
PHYSICS LETTERS B, 1992, 275 (3-4) :252-258
[10]  
Baldsiefen G., 1991, P 10 INT SCH NUCL PH