An Analysis of Gas Metal Arc Welding Using the Lyapunov Exponent

被引:20
作者
Li Zhiyong [1 ]
Zhang Qiang [1 ]
Li Yan [1 ]
Yan Xiaocheng [1 ]
Srivatsan, T. S. [2 ]
机构
[1] N Univ China, Coll Mat Sci & Engn, Taiyuan 030051, Peoples R China
[2] Univ Akron, Dept Mech Engn, Akron, OH 44325 USA
基金
美国国家科学基金会;
关键词
Lyapunov exponent; Chaos; Gas metal arc welding; Welding parameter; TIME-SERIES; LASER;
D O I
10.1080/10426914.2012.746705
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The characteristics of chaos are unique to the technique of gas metal arc welding (GMAW), which can be safely classified as being a nonlinear process. In this article, salient aspects relevant to the development and use of computational technique to accurately calculate the maximum Lyapunov exponent of the welding processes for different parameters is presented and discussed. The maximum Lyapunov exponent is then used to evaluate stability of the welding process while concurrently aiding in the selection of the welding parameters. Careful analysis of the results reveals overall chaos to exist in the gas metal arc welding process for the different droplet transfer modes. Overall stability of the welding process is related to the chaos that is generated and exists. The maximum Lyapunov exponent can be safely used as a valid criterion for evaluating the stability of the welding process. This aids in the selection of an optimized welding parameter for the welding process to form a weld bead that has both quality and integrity.
引用
收藏
页码:213 / 219
页数:7
相关论文
共 50 条
[21]   Effect of shielding gas composition on gas metal arc welding phenomena using rare earth metal added wire [J].
Tanaka M. ;
Methong T. ;
Komen H. ;
Shigeta M. ;
Kataoka T. ;
Matsushita M. ;
Kozuki S. .
Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2021, 38 (04) :438-447
[22]   Effects of welding velocity on the impact behavior of droplets in gas metal arc welding [J].
Feng, Jiecai ;
Li, Liqun ;
Chen, Yanbin ;
Lei, Zhenglong ;
Qin, Hao ;
Li, Ying .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2012, 212 (11) :2163-2172
[23]   Connected, digitalized welding production—Industrie 4.0 in gas metal arc welding [J].
U. Reisgen ;
S. Mann ;
K. Middeldorf ;
R. Sharma ;
G. Buchholz ;
K. Willms .
Welding in the World, 2019, 63 :1121-1131
[24]   Through arc sensing for reciprocating wire feed gas metal arc welding [J].
Kim, Cheolhee .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2015, 229 (09) :1557-1565
[25]   Modeling and analysis of droplet forming in gas metal arc welding short circuiting transfer [J].
Laser Processing Laboratory, Shanghai Jiaotong University, Shanghai 200240, China .
Hanjie Xuebao, 2007, 8 (73-76)
[26]   Stability analysis of the gas metal arc welding process based on acoustic emission technique [J].
Sanchez Roca, Angel ;
Carvajal Fals, Hipolito ;
Blanco Fernandez, Julio ;
Sanz Adan, Felix ;
Jimenez Macias, Emilio .
SOLDAGEM & INSPECAO, 2008, 13 (01) :61-69
[27]   Stability analysis of the gas metal arc welding process based on acoustic emission technique [J].
Facultad de Ingeniería Mecánica, Universidad de Oriente, Santiago de Cuba, Cuba ;
不详 ;
不详 .
Weld. Int., 2009, 3 (173-180) :173-180
[28]   Effect of Bevel Angle and Welding Current on T-Joint Using Gas Metal Arc Welding (GMAW) [J].
Zakaria, Z. A. ;
Jasri, M. A. H. Mohd ;
Yaacob, Amirrudin ;
Hasan, K. N. M. ;
Othman, A. R. .
ADVANCES IN JOINING TECHNOLOGY, 2019, :49-57
[29]   Experimental measurements of fall voltages in gas metal arc welding [J].
1600, American Welding Society (96)
[30]   Thermal model of the Gas Metal Arc Welding hardfacing process [J].
Sachajdak, Andrzej ;
Sloma, Jacek ;
Szczygiel, Ireneusz .
APPLIED THERMAL ENGINEERING, 2018, 141 :378-385