Heterogeneous Dissipation and Size Dependencies of Dissipative Processes in Nanoscale Interactions

被引:11
作者
Gadelrab, Karim R. [1 ]
Santos, Sergio [1 ]
Chiesa, Matteo [1 ]
机构
[1] Masdar Inst Sci & Technol, Lab Energy & Nanosci, Abu Dhabi, U Arab Emirates
关键词
ATOMIC-FORCE MICROSCOPY; ENERGY-DISSIPATION; PHASE-CONTRAST;
D O I
10.1021/la3044413
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Here, processes through which the energy stored in an atomic force microscope cantilever dissipates in the tip sample interaction are first decoupled qualitatively. A formalism is then presented and shown to allow quantification of fundamental aspects of nanoscale dissipation such as deformation, viscosity, and surface energy hysteresis. Accurate quantification of energy dissipation requires precise calibration of the conversion of the oscillation amplitude from volts to nanometers. In this respect, an experimental methodology is presented that allows such calibration with errors of 3% or less. It is shown how simultaneous decoupling and quantification of dissipative processes and in situ tip radius quantification provide the required information to analyze dependencies of dissipative mechanisms on the relative size of the interacting bodies, that is, tip and surface. When there is chemical affinity, atom atom dissipative interactions approach the energies of chemical bonds. Such atom atom interactions are found to be independent of cantilever properties and tip geometry thus implying that they are intensive properties of the system; these interactions prevail in the form of surface energy hysteresis. Viscoelastic dissipation on the other hand is shown to depend on the size of the probe and operational parameters.
引用
收藏
页码:2200 / 2206
页数:7
相关论文
共 45 条
[1]  
[Anonymous], MATLAB R2010B SIMULI
[2]   A NONDESTRUCTIVE METHOD FOR DETERMINING THE SPRING CONSTANT OF CANTILEVERS FOR SCANNING FORCE MICROSCOPY [J].
CLEVELAND, JP ;
MANNE, S ;
BOCEK, D ;
HANSMA, PK .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1993, 64 (02) :403-405
[3]   Energy dissipation in tapping-mode atomic force microscopy [J].
Cleveland, JP ;
Anczykowski, B ;
Schmid, AE ;
Elings, VB .
APPLIED PHYSICS LETTERS, 1998, 72 (20) :2613-2615
[4]   EFFECT OF CONTACT DEFORMATIONS ON ADHESION OF PARTICLES [J].
DERJAGUIN, BV ;
MULLER, VM ;
TOPOROV, YP .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1975, 53 (02) :314-326
[5]   Conservative and dissipative force imaging of switchable rotaxanes with frequency-modulation atomic force microscopy [J].
Farrell, AA ;
Fukuma, T ;
Uchihashi, T ;
Kay, ER ;
Bottari, G ;
Leigh, DA ;
Yamada, H ;
Jarvis, SP .
PHYSICAL REVIEW B, 2005, 72 (12)
[6]   Disentangling viscosity and hysteretic dissipative components in dynamic nanoscale interactions [J].
Gadelrab, Karim R. ;
Santos, Sergio ;
Souier, Tewfik ;
Chiesa, Matteo .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2012, 45 (01)
[7]   Identification of nanoscale dissipation processes by dynamic atomic force microscopy [J].
Garcia, R. ;
Gomez, C. J. ;
Martinez, N. F. ;
Patil, S. ;
Dietz, C. ;
Magerle, R. .
PHYSICAL REVIEW LETTERS, 2006, 97 (01)
[8]   Dynamic atomic force microscopy methods [J].
García, R ;
Pérez, R .
SURFACE SCIENCE REPORTS, 2002, 47 (6-8) :197-301
[9]   Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy [J].
García, R ;
San Paulo, A .
PHYSICAL REVIEW B, 1999, 60 (07) :4961-4967
[10]  
García R, 1999, SURF INTERFACE ANAL, V27, P312, DOI 10.1002/(SICI)1096-9918(199905/06)27:5/6<312::AID-SIA496>3.0.CO