Warp Weave Texture Feature Recognition Based on Autocorrelation Function

被引:0
作者
Ma, Yunfang [1 ]
机构
[1] Taizhou Vocat Tech Coll, Dept Comp Engn, Taizhou 318000, Zhejiang, Peoples R China
来源
AUTOMATION EQUIPMENT AND SYSTEMS, PTS 1-4 | 2012年 / 468-471卷
关键词
fabric weave; feature analysis; warp yarn; autocorrelation function;
D O I
10.4028/www.scientific.net/AMR.468-471.1090
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this thesis, based on the weft organization features parameters analysis results, according to warp yarn arrangement features, apply correlation coefficient and autocorrelation function in weft weave texture feature recognition, establish weft cell image, analysis the weft cell image correlation coefficient, find out the number of weft circle, set up same kind weft cell image of the same phase of weft unit, calculate the warp brightness values of the same kind weft cell image, distinguish the weft points area and warp points area through luminance signal analysis, analyze the tissue points area changes between the adjacent similar weft cell, and determine the location and density of warp yarn. Experiments prove that the Fourier-transform method is feasible and has considerable accuracy.
引用
收藏
页码:1090 / 1093
页数:4
相关论文
共 5 条
[1]  
Gao W., 2002, COTTON TEXTILE TECHN, V30, P218
[2]  
Gao Weidong, 2002, COTTON TEXTILE TECHN, V30, P159
[3]  
Ma Yunfang, 2003, COMPUTER SIMULATION
[4]  
[潘如如 Pan Ruru], 2010, [纺织学报, Journal of Textile Research], V31, P43
[5]  
Yunfang MA, 2007, WOOL TEXTILE J, V3, P56