Scattering problems for the one-dimensional nonlinear Dirac equation with power nonlinearity

被引:1
作者
Sasaki, Hironobu [1 ]
机构
[1] Chiba Univ, Dept Math & Informat, Chiba 2638522, Japan
来源
IC-MSQUARE 2012: INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELLING IN PHYSICAL SCIENCES | 2013年 / 410卷
关键词
OPERATOR;
D O I
10.1088/1742-6596/410/1/012035
中图分类号
O59 [应用物理学];
学科分类号
摘要
We study scattering problems for the one-dimensional nonlinear Dirac equation (partial derivative(t) + alpha partial derivative(x) + i beta)Phi = gimel vertical bar Phi vertical bar(p-1)Phi. We prove that if p > 3 (resp. p > 3 + 1/6), then the wave operator (resp. the scattering operator) is well-defined on some 0-neighborhood of a weighted Sobolev space.
引用
收藏
页数:4
相关论文
共 8 条
[2]   Analyticity of the Scattering Operator for Semilinear Dispersive Equations [J].
Carles, Remi ;
Gallagher, Isabelle .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 286 (03) :1181-1209
[3]   RAPIDLY DECAYING SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
CAZENAVE, T ;
WEISSLER, FB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (01) :75-100
[4]   The initial value problem for the cubic nonlinear Klein-Gordon equation [J].
Hayashi, Nakao ;
Naumkin, Pavel I. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2008, 59 (06) :1002-1028
[5]   SCATTERING OPERATOR FOR NONLINEAR KLEIN-GORDON EQUATIONS [J].
Hayashi, Nakao ;
Naumkin, Pavel I. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (05) :771-781
[6]  
Pelinovsky D, 2011, Res. Inst. Math. Sci. (RIMS),, V26, P37
[7]  
Sasaki H., PREPRINT
[8]  
Strauss W.A, 1974, Scattering Theory in Mathematical Physics, NATO Advanced Study Institutes Series, P53, DOI DOI 10.1007/978-94-010-2147-03