Infinitely many solutions for a class of stationary Schrodinger equations with non-standard growth

被引:1
作者
Ayazoglu , R. [1 ]
Alisoy, Gulizar [2 ]
机构
[1] Bayburt Univ, Fac Educ, Bayburt, Turkey
[2] Namik Kemal Univ, Fac Sci & Arts, Tekirdag, Turkey
关键词
Variable exponent Lebesgue-Sobolev spaces; p(x)-Laplace operator; Schrodinger type equation; variant Fountain theorem; P(X)-LAPLACIAN EQUATIONS; VARIABLE EXPONENT; EXISTENCE; SPACES; MULTIPLICITY; THEOREMS; LEBESGUE;
D O I
10.1080/17476933.2017.1322074
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the existence of infinitely many solutions for a class of stationary Schrodinger type equations in R-N involving the p(x)-Laplacian. The non-linearity is superlinear but does not satisfy the Ambrosetti-Rabinowitz type condition. The main arguments are based on the geometry supplied by Fountain Theorem. We also establish a Bartsch type compact embedding theorem for variable exponent spaces.
引用
收藏
页码:482 / 500
页数:19
相关论文
共 40 条
[1]  
Ablowitz M. J., 2004, Discrete and continuous nonlinear Schrdinger systems
[2]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[3]   On superlinear p(x)-Laplacian equations in RN [J].
Alves, Claudianor O. ;
Liu, Shibo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (08) :2566-2579
[4]  
[Anonymous], 2002, Variational methods in nonlinear fiber optics and related fields
[5]  
[Anonymous], 1984, DIFF EQUAT+
[6]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[7]  
BARTSCH T, 2001, COMMUN CONTEMP MATH, V3, P1, DOI DOI 10.1142/S0219199701000494
[8]   DISINTEGRATION OF WAVE TRAINS ON DEEP WATER .1. THEORY [J].
BENJAMIN, TB ;
FEIR, JE .
JOURNAL OF FLUID MECHANICS, 1967, 27 :417-&
[9]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[10]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+