Weak Galerkin method for the Biot's consolidation model

被引:31
作者
Hu, Xiaozhe [1 ]
Mu, Lin [2 ]
Ye, Xiu [3 ]
机构
[1] Tufts Univ, Dept Math, Medford, MA 02155 USA
[2] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA
[3] Univ Arkansas, Dept Math & Stat, Little Rock, AR 72204 USA
基金
美国国家科学基金会;
关键词
Biot's consolidation model; Finite element method; Weak Galerkin finite elements method; FINITE-ELEMENT-METHOD; POROELASTICITY; CONVERGENCE; FLOW; DISCRETIZATIONS; APPROXIMATIONS; ELASTICITY; STABILITY; SOIL;
D O I
10.1016/j.camwa.2017.07.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a weak Galerkin (WG) finite element method for the Biot's consolidation model in the classical displacement-pressure two-field formulation. Weak Galerkin linear finite elements are used for both displacement and pressure approximations in spatial discretizations. Backward Euler scheme is used for temporal discretization in order to obtain an implicit fully discretized scheme. We study the well-posedness of the linear system at each time step and also derive the overall optimal-order convergence of the WG formulation. Such WG scheme is designed on general shape regular polytopal meshes and provides stable and oscillation-free approximation for the pressure without special treatment. Numerical experiments are presented to demonstrate the efficiency and accuracy of the proposed weak Galerkin finite element method. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2017 / 2030
页数:14
相关论文
共 54 条
[11]  
Dautov R.Z., 1997, DIFF URAVN, V33, P515
[12]   On convergence of certain finite volume difference discretizations for 1D poroelasticity interface problems [J].
Ewing, Richard E. ;
Iliev, Oleg P. ;
Lazarov, Raytcho D. ;
Naumovich, Anna .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (03) :652-671
[13]  
Favino M., 2013, STABILITY CONDITION, P919, DOI [10.1061/9780784412992.110, DOI 10.1061/9780784412992.110]
[14]   A fully coupled 3-D mixed finite element model of Biot consolidation [J].
Ferronato, Massimiliano ;
Castelletto, Nicola ;
Gambolati, Giuseppe .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (12) :4813-4830
[15]   A finite difference analysis of Biot's consolidation model [J].
Gaspar, FJ ;
Lisbona, FJ ;
Vabishchevich, PN .
APPLIED NUMERICAL MATHEMATICS, 2003, 44 (04) :487-506
[16]  
Gaspar FranciscoJ., 2002, Comput. Methods Appl. Math, V2, P132, DOI DOI 10.2478/CMAM-2002-0008
[17]   On the causes of pressure oscillations in low-permeable and low-compressible porous media [J].
Haga, Joachim Berdal ;
Osnes, Harald ;
Langtangen, Hans Petter .
INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2012, 36 (12) :1507-1522
[18]   A nonconforming finite element method for the Biot's consolidation model in poroelasticity [J].
Hu, Xiaozhe ;
Rodrigo, Carmen ;
Gaspar, Francisco J. ;
Zikatanov, Ludmil T. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 310 :143-154
[19]   FULLY COUPLED CONSOLIDATION MODEL OF SUBSIDENCE OF VENICE [J].
LEWIS, RW ;
SCHREFLER, B .
WATER RESOURCES RESEARCH, 1978, 14 (02) :223-230
[20]   COUPLING VERSUS UNCOUPLING IN SOIL CONSOLIDATION [J].
LEWIS, RW ;
SCHREFLER, BA ;
SIMONI, L .
INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 1991, 15 (08) :533-548