STRONGLY NONCOSINGULAR MODULES

被引:0
作者
Alagoz, Y. [1 ]
Durgun, Y. [2 ]
机构
[1] Izmir Inst Technol, Dept Math, TR-35430 Izmir, Turkey
[2] Bitlis Eren Univ, Dept Math, TR-13000 Bitlis, Turkey
关键词
coclosed submodules; (non) cosingular modules; coatomic modules; ENDOMORPHISM-RINGS; CONEAT SUBMODULES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An R-module M is called strongly noncosingular if it has no nonzero Rad-small (cosingular) homomorphic image in the sense of Harada. It is proven that (1) an R-module M is strongly noncosingular if and only if M is coatomic and noncosingular; (2) a right perfect ring R is Artinian hereditary serial if and only if the class of injective modules coincides with the class of (strongly) noncosingular R-modules; (3) absolutely coneat modules are strongly noncosingular if and only if R is a right max ring and injective modules are strongly noncosingular; (4) a commutative ring R is semisimple if and only if the class of injective modules coincides with the class of strongly noncosingular R-modules.
引用
收藏
页码:999 / 1013
页数:15
相关论文
共 36 条
[1]  
Anderson F.W., 1992, GRADUATE TEXTS MATH, V13
[2]  
[Anonymous], 2001, GRADUATE TEXTS MATH
[3]   CHARACTERIZATIONS OF SEMI-PERFECT AND PERFECT MODULES [J].
AZUMAYA, G .
MATHEMATISCHE ZEITSCHRIFT, 1974, 140 (02) :95-103
[4]  
BACCELLA G, 1984, REND SEMIN MAT U PAD, V72, P117
[5]  
Birkenmeier G. F., 2001, P 3 KOR CHIN JAP S 2
[6]   CONEAT SUBMODULES AND CONEAT-FLAT MODULES [J].
Buyukasik, Engin ;
Durgun, Yilmaz .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (06) :1305-1319
[7]   ENDOMORPHISM-RINGS OF MODULES OVER NON-SINGULAR CS RINGS [J].
CHATTERS, AW ;
KHURI, SM .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1980, 21 (JUN) :434-444
[8]  
Clark J, 2006, FRONT MATH, P1
[9]   NEAT AND CONEAT SUBMODULES OF MODULES OVER COMMUTATIVE RINGS [J].
Crivei, Septimiu .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (02) :343-352
[10]   Neat submodules over integral domains [J].
Fuchs, Laszlo .
PERIODICA MATHEMATICA HUNGARICA, 2012, 64 (02) :131-143