Extensions of goal-oriented error estimation methods to simulations of highly-nonlinear response of shock-loaded elastomer-reinforced structures

被引:12
作者
Fuentes, David
Littlefield, David
Oden, J. Tinsley
Prudhomme, Serge
机构
[1] Univ Texas, Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] Univ Alabama Birmingham, Dept Mech Engn, Birmingham, AL 35294 USA
关键词
nonlinear continuum mechanics; shock loading; goal-oriented error estimation; A posteriori error estimation; dual problem;
D O I
10.1016/j.cma.2005.10.027
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper describes extensions of goal-oriented methods for a posteriori error estimation and control of numerical approximation to a class of highly-nonlinear problems in computational solid mechanics. An updated Lagrangian formulation of the dynamical, large-deformation response of structures composed of strain-rate-sensitive elastomers and elastoplastic materials is developed. To apply the theory of goal-oriented error estimation, a backward-in-time dual formulation of these problems is derived, and residual error estimators for meaningful quantities of interest are established. The target problem class is that of axisymmetric deformations of layered elastomer-reinforced shells-of-revolution subjected to shock loading. Extensive numerical results on solutions of representative problems are given. It is shown that extensions of the theory of goal-oriented error estimation can be developed and applied effectively to a class of highlynonlinear, multi-physics problems in solid and structural mechanics. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:4659 / 4680
页数:22
相关论文
共 24 条
[1]  
Ainsworth M, 2000, PUR AP M-WI, DOI 10.1002/9781118032824
[2]  
ARGYRIS JH, 1965, P C MATR METH STRUCT
[3]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615
[4]  
Babuska I, 1986, ACCURACY ESTIMATES A
[5]  
BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X
[6]  
Becker R, 2001, ACT NUMERIC, V10, P1, DOI 10.1017/S0962492901000010
[7]  
Belytschko T., 2013, NONLINEAR FINITE ELE
[8]  
GARTLAND EC, 1984, SIAM J NUMER ANAL, V21, P84
[9]   Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations [J].
Hartmann, R ;
Houston, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 183 (02) :508-532
[10]   Adaptive strategies and error control for computing material forces in fracture mechanics [J].
Heintz, P ;
Larsson, F ;
Hansbo, P ;
Runesson, K .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 60 (07) :1287-1299