Radiation Model for Terahertz Transmission-Line Metamaterial Quantum-Cascade Lasers

被引:26
作者
Hon, Philip W. C. [1 ]
Tavallaee, Amir A. [1 ,2 ]
Chen, Qi-Sheng [3 ]
Williams, Benjamin S. [1 ,2 ]
Itoh, Tatsuo [1 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, CNSI, Los Angeles, CA 90095 USA
[3] Northrop Grumman Aerosp Syst, Redondo Beach, CA 90278 USA
基金
美国国家科学基金会;
关键词
Cavity model; composite right/left-handed transmission line; leaky-wave antenna; quantum-cascade (QC) lasers; terahertz active metamaterials;
D O I
10.1109/TTHZ.2012.2191023
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present the use of the cavity antenna model in predicting the radiative loss, far-field polarization and far-field beam patterns of terahertz quantum-cascade (QC) lasers. Metal-metal waveguide QC-lasers, transmission-line metamaterial QC-lasers, and leaky-wave metamaterial antennas are considered. Comparison of the fundamental and first higher order lateral mode in a metal-metal waveguide QC-laser shows distinct differences in the radiation characteristics. Full-wave finite-element simulations, cavity model predictions and measurements of far-field beam patterns are compared for a one-dimensional leaky-wave antenna. Lastly, an active leaky-wave metamaterial antenna with full backward to forward wave beam steering is proposed and analyzed using the cavity antenna model.
引用
收藏
页码:323 / 332
页数:10
相关论文
共 23 条
[1]   Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions [J].
Adam, AJL ;
Kasalynas, I ;
Hovenier, JN ;
Klaassen, TO ;
Gao, JR ;
Orlova, EE ;
Williams, BS ;
Kumar, S ;
Hu, Q ;
Reno, JL .
APPLIED PHYSICS LETTERS, 2006, 88 (15)
[2]   Low-divergence single-mode terahertz quantum cascade laser [J].
Amanti, M. I. ;
Fischer, M. ;
Scalari, G. ;
Beck, M. ;
Faist, J. .
NATURE PHOTONICS, 2009, 3 (10) :586-590
[3]  
Balanis ConstantineA., 2010, Antenna Theory, VThird
[4]  
Caloz C, 2006, ELECTROMAGNETIC METAMATERIALS: TRANSMISSION LINE THEORY AND MICROWAVE APPLICATIONS: THE ENGINEERING APPROACH, P1
[5]   Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions [J].
Chassagneux, Y. ;
Colombelli, R. ;
Maineult, W. ;
Barbieri, S. ;
Beere, H. E. ;
Ritchie, D. A. ;
Khanna, S. P. ;
Linfield, E. H. ;
Davies, A. G. .
NATURE, 2009, 457 (7226) :174-178
[6]   Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers [J].
Gellie, P. ;
Maineult, W. ;
Andronico, A. ;
Leo, G. ;
Sirtori, C. ;
Barbieri, S. ;
Chassagneux, Y. ;
Coudevylle, J. R. ;
Colombelli, R. ;
Khanna, S. P. ;
Linfield, E. H. ;
Davies, A. G. .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (12)
[7]  
Jasik H., 1961, ANTENNA ENG HDB
[8]   Terahertz semiconductor-heterostructure laser [J].
Köhler, R ;
Tredicucci, A ;
Beltram, F ;
Beere, HE ;
Linfield, EH ;
Davies, AG ;
Ritchie, DA ;
Iotti, RC ;
Rossi, F .
NATURE, 2002, 417 (6885) :156-159
[9]   Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides [J].
Kumar, Sushil ;
Williams, Benjamin S. ;
Qin, Qi ;
Lee, Alan W. M. ;
Hu, Qing ;
Reno, John L. .
OPTICS EXPRESS, 2007, 15 (01) :113-128
[10]   186 K operation of terahertz quantum-cascade lasers based on a diagonal design [J].
Kumar, Sushil ;
Hu, Qing ;
Reno, John L. .
APPLIED PHYSICS LETTERS, 2009, 94 (13)