Human dendritic cell subsets: an update

被引:969
作者
Collin, Matthew
Bigley, Venetia
机构
[1] Newcastle Upon Tyne Hosp NHS Fdn Trust, Inst Cellular Med, Human Dendrit Cell Lab, Newcastle Upon Tyne, Tyne & Wear, England
[2] Newcastle Upon Tyne Hosp NHS Fdn Trust, NIHR Newcastle Biomed Res Ctr, Newcastle Upon Tyne, Tyne & Wear, England
[3] Newcastle Univ, Newcastle Upon Tyne, Tyne & Wear, England
基金
英国惠康基金;
关键词
antigen presentation/processing; dendritic cell; transcriptomics; HUMAN LANGERHANS CELLS; ANTIGEN CROSS-PRESENTATION; CD8(+) T-CELLS; COLONY-STIMULATING FACTOR; DRAINING LYMPH-NODES; IFN-ALPHA PRODUCTION; TRANSCRIPTION FACTOR; I INTERFERON; LINEAGE COMMITMENT; HUMAN TISSUES;
D O I
10.1111/imm.12888
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Dendritic cells (DC) are a class of bone-marrow-derived cells arising from lympho-myeloid haematopoiesis that form an essential interface between the innate sensing of pathogens and the activation of adaptive immunity. This task requires a wide range of mechanisms and responses, which are divided between three major DC subsets: plasmacytoid DC (pDC), myeloid/conventional DC1 (cDC1) and myeloid/conventional DC2 (cDC2). Each DC subset develops under the control of a specific repertoire of transcription factors involving differential levels of IRF8 and IRF4 in collaboration with PU.1, ID2, E2-2, ZEB2, KLF4, IKZF1 and BATF3. DC haematopoiesis is conserved between mammalian species and is distinct from monocyte development. Although monocytes can differentiate into DC, especially during inflammation, most quiescent tissues contain significant resident populations of DC lineage cells. An extended range of surface markers facilitates the identification of specific DC subsets although it remains difficult to dissociate cDC2 from monocyte-derived DC in some settings. Recent studies based on an increasing level of resolution of phenotype and gene expression have identified pre-DC in human blood and heterogeneity among cDC2. These advances facilitate the integration of mouse and human immunology, support efforts to unravel human DC function in vivo and continue to present new translational opportunities to medicine.
引用
收藏
页码:3 / 20
页数:18
相关论文
共 202 条
[121]   Langerhans Cell Homeostasis and Turnover After Nonmyeloablative and Myeloablative Allogeneic Hematopoietic Cell Transplantation [J].
Mielcarek, Marco ;
Kirkorian, Anna Yasmine ;
Hackman, Robert C. ;
Price, Jeremy ;
Storer, Barry E. ;
Wood, Brent L. ;
Leboeuf, Marylene ;
Bogunovic, Milena ;
Storb, Rainer ;
Inamoto, Yoshihiro ;
Flowers, Mary E. ;
Martin, Paul J. ;
Collin, Matthew ;
Merad, Miriam .
TRANSPLANTATION, 2014, 98 (05) :563-568
[122]   Hematopoietic origin of Langerhans cell histiocytosis and Erdheim-Chester disease in adults [J].
Milne, Paul ;
Bigley, Venetia ;
Bacon, Chris M. ;
Neel, Antoine ;
McGovern, Naomi ;
Bomken, Simon ;
Haniffa, Muzlifah ;
Diamond, Eli L. ;
Durham, Benjamin H. ;
Visser, Johannes ;
Hunt, David ;
Gunawardena, Harsha ;
Macheta, Mac ;
McClain, Kenneth L. ;
Allen, Carl ;
Abdel-Wahab, Omar ;
Collin, Matthew .
BLOOD, 2017, 130 (02) :167-175
[123]   CD1c+ blood dendritic cells have Langerhans cell potential [J].
Milne, Paul ;
Bigley, Venetia ;
Gunawan, Merry ;
Haniffa, Muzlifah ;
Collin, Matthew .
BLOOD, 2015, 125 (03) :470-473
[124]   Human Dendritic Cell Subsets from Spleen and Blood Are Similar in Phenotype and Function but Modified by Donor Health Status [J].
Mittag, Diana ;
Proietto, Anna I. ;
Loudovaris, Thomas ;
Mannering, Stuart I. ;
Vremec, David ;
Shortman, Ken ;
Wu, Li ;
Harrison, Leonard C. .
JOURNAL OF IMMUNOLOGY, 2011, 186 (11) :6207-6217
[125]   Of skin and bone: did Langerhans cells and osteoclasts evolve from a common ancestor? [J].
Mueller, Christopher G. ;
Voisin, Benjamin .
JOURNAL OF ANATOMY, 2019, 235 (02) :412-417
[126]   Transcriptional Control of Dendritic Cell Development [J].
Murphy, Theresa L. ;
Grajales-Reyes, Gary E. ;
Wu, Xiaodi ;
Tussiwand, Roxane ;
Briseno, Carlos G. ;
Iwata, Arifumi ;
Kretzer, Nicole M. ;
Durai, Vivek ;
Murphy, Kenneth M. .
ANNUAL REVIEW OF IMMUNOLOGY, VOL 34, 2016, 34 :93-119
[127]   Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin [J].
Nagao, Keisuke ;
Kobayashi, Tetsuro ;
Moro, Kazuyo ;
Ohyama, Manabu ;
Adachi, Takeya ;
Kitashima, Daniela Y. ;
Ueha, Satoshi ;
Horiuchi, Keisuke ;
Tanizaki, Hideaki ;
Kabashima, Kenji ;
Kubo, Akiharu ;
Cho, Young-hun ;
Clausen, Bjorn E. ;
Matsushima, Kouji ;
Suematsu, Makoto ;
Furtado, Glaucia C. ;
Lira, Sergio A. ;
Farber, Joshua M. ;
Udey, Mark C. ;
Amagai, Masayuki .
NATURE IMMUNOLOGY, 2012, 13 (08) :744-+
[128]  
NESTLE FO, 1993, J IMMUNOL, V151, P6535
[129]   IL-10 promotes homeostatic proliferation of human CD8+ memory T cells and, when produced by CD1c+ DCs, shapes naive CD8+ T-cell priming [J].
Nizzoli, Giulia ;
Larghi, Paola ;
Paroni, Moira ;
Crosti, Maria Cristina ;
Moro, Monica ;
Neddermann, Petra ;
Caprioli, Flavio ;
Pagani, Massimiliano ;
De Francesco, Raffaele ;
Abrignani, Sergio ;
Geginat, Jens .
EUROPEAN JOURNAL OF IMMUNOLOGY, 2016, 46 (07) :1622-1632
[130]   Human CD1c+ dendritic cells secrete high levels of IL-12 and potently prime cytotoxic T-cell responses [J].
Nizzoli, Giulia ;
Krietsch, Jana ;
Weick, Anja ;
Steinfelder, Svenja ;
Facciotti, Federica ;
Gruarin, Paola ;
Bianco, Annalisa ;
Steckel, Bodo ;
Moro, Monica ;
Crosti, Mariacristina ;
Romagnani, Chiara ;
Stoelzel, Katharina ;
Torretta, Sara ;
Pignataro, Lorenzo ;
Scheibenbogen, Carmen ;
Neddermann, Petra ;
De Francesco, Raffaele ;
Abrignani, Sergio ;
Geginat, Jens .
BLOOD, 2013, 122 (06) :932-942