FEDOSOV QUANTIZATION IN ALGEBRAIC CONTEXT

被引:80
作者
Bezrukavnikov, R. [1 ]
Kaledin, D. [2 ]
机构
[1] Northwestern Univ, Evanston, IL 60208 USA
[2] VA Steklov Math Inst, Moscow 117333, Ussr, Russia
关键词
Formal geometry; quantization;
D O I
10.17323/1609-4514-2004-4-3-559-592
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of quantization of smooth symplectic varieties in the algebro-geometric setting. We show that, under appropriate cohomological assumptions, the Fedosov quantization procedure goes through with minimal changes. The assumptions are satisfied, for example, for affine and for projective varieties. We also give a classification of all possible quantizations.
引用
收藏
页码:559 / 592
页数:34
相关论文
共 22 条
[1]  
[Anonymous], SELECTA MATH
[2]  
Beilinson A., preprint
[3]  
Beilinson A., 1992, PREPRINT
[4]  
Beilinson A., 1993, Adv. Soviet Math., V16, P1
[5]  
BOGOMOLOV FA, 1978, DOKL AKAD NAUK SSSR+, V243, P1101
[6]  
Bott R., 1972, LECT NOTES MATH, V279, P1
[7]  
Deligne P., 1966, LECT NOTES MATH, V20
[8]   EXISTENCE OF STAR-PRODUCTS AND OF FORMAL DEFORMATIONS OF THE POISSON LIE-ALGEBRA OF ARBITRARY SYMPLECTIC-MANIFOLDS [J].
DEWILDE, M ;
LECOMTE, PBA .
LETTERS IN MATHEMATICAL PHYSICS, 1983, 7 (06) :487-496
[9]   A SIMPLE GEOMETRICAL CONSTRUCTION OF DEFORMATION QUANTIZATION [J].
FEDOSOV, BV .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1994, 40 (02) :213-238
[10]   Grothendieck topologies and deformation Theory II [J].
Gaitsgory, D .
COMPOSITIO MATHEMATICA, 1997, 106 (03) :321-348