An exact algorithm for the subset sum problem

被引:14
作者
Soma, NY
Toth, P
机构
[1] Univ Bologna, DEIS, I-40136 Bologna, Italy
[2] IEC, Div Ciencia Comp, Inst Tecnol Aeronaut, BR-12228900 Sao Jose Dos Campos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
combinatorial optimization; subset sum problem; dynamic programming; core problem; binary tree;
D O I
10.1016/S0377-2217(00)00329-5
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
The subset sum problem (SSP) is defined as: "Given n positive integers w(1),..., w(n), find a combination amongst them such that their sum is the closest to, but not exceeding, a positive integer c". We suggest an exact algorithm by introducing a new type of Core Problem and also, by using an improved version of Bellman's recursion. We show that the resulting algorithm is bounded in time and space resource utilizations, respectively, by O(Max{(n - log(2)c(2))c, clog(2)c}) and O(n + c). In addition to the sharp memory requirement decrease in comparison with any dynamic programming-based algorithm, the search space, for a vast range of instances, is restricted only to feasible states. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:57 / 66
页数:10
相关论文
共 17 条
[1]  
AVIS D, 1980, OPER RES, V28, P1410
[2]   AN ALGORITHM FOR LARGE ZERO-ONE KNAPSACK-PROBLEMS [J].
BALAS, E ;
ZEMEL, E .
OPERATIONS RESEARCH, 1980, 28 (05) :1130-1154
[3]  
DICKSON LE, 1923, HIST THEORY NUMBERS, V3
[4]   ALGORITHMUS 47 - AN ALGORITHM FOR THE SOLUTION OF THE 0-1 KNAPSACK-PROBLEM [J].
FAYARD, D ;
PLATEAU, G .
COMPUTING, 1982, 28 (03) :269-287
[5]  
Garey M. R., 1989, COMPUTERS INTRACTABI
[6]  
Lawler E. L., 1979, Mathematics of Operations Research, V4, P339, DOI 10.1287/moor.4.4.339
[7]   A MIXTURE OF DYNAMIC-PROGRAMMING AND BRANCH-AND-BOUND FOR THE SUBSET-SUM PROBLEM [J].
MARTELLO, S ;
TOTH, P .
MANAGEMENT SCIENCE, 1984, 30 (06) :765-771
[8]  
Martello S., 1990, KNAPSACK PROBLEMS AL
[9]   A minimal algorithm for the 0-1 Knapsack Problem [J].
Pisinger, D .
OPERATIONS RESEARCH, 1997, 45 (05) :758-767
[10]  
PISINGER D, 1999, HDB COMBINATORIAL OP