Crystalline phase transformation of electrospinning TiO2 nanofibres carried out by high temperature annealing

被引:19
作者
Secundino-Sanchez, O. [1 ]
Diaz-Reyes, J. [2 ]
Aguila-Lopez, J. [2 ]
Sanchez-Ramirez, J. F. [2 ]
机构
[1] Inst Politecn Nacl, Unidad Profes Interdisciplinaria Ingn & Tecnol Av, Av Inst Politecn Nacl 2580, Ciudad De Mexico 07340, Mexico
[2] Inst Politecn Nacl, Ctr Invest Biotecnol Aplicada, Km 1-5, Tepetitla 90700, Tlaxcala, Mexico
关键词
Electrospinning technique; Semiconductor nanofibres; Titanium dioxide; Structural properties; Raman spectroscopy; X-ray diffraction; RAMAN-SPECTRA; ANATASE; RUTILE; TITANIA; FILMS; NANOPARTICLES; NANOCRYSTALS; FABRICATION; HYDROGEN; WATER;
D O I
10.1016/j.molstruc.2019.05.092
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work reports the crystalline phase transformation of electrospinning TiO2 nanofibres by annealing at high temperatures. The nanofibres chemical stoichiometry was determined by Energy-dispersive Xray spectroscopy (EDS), which allowed find that the TiO2 crystal phase transformation is caused by oxygen vacancy generation. The TiO2 nanofibres diameter varied from 137.0 to 115.3 nm in the temperature range of 100-1000 degrees C, which was estimated by Scanning Electron Microscopy. The TiO2 nanofibres structural transformation from pure anatase to pure rutile structures, including the quasiamorphous and anatase-rutile mixed phases has been confirmed by Raman scattering and X-ray diffraction. The Raman spectroscopy exhibits the anomalous behaviour for band broadening and shifting of Raman bands with increasing crystallite size that form the nanofibres. By X-ray diffraction was found that the nanofibres crystalline phases present as preferential growth direction (101) for anatase and (110) for rutile. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:163 / 170
页数:8
相关论文
共 50 条
  • [41] Phase, size and shape transformation by fungal biotransformation of bulk TiO2
    Khan, Shadab Ali
    Ahmad, Absar
    CHEMICAL ENGINEERING JOURNAL, 2013, 230 : 367 - 371
  • [42] Mechanically induced polymorphic phase transformation in nanocrystalline TiO2 powder
    Rezaee, M.
    Khoie, S. M. Mousavi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 507 (02) : 484 - 488
  • [43] Controlling crystalline phase of TiO2 thin films to evaluate its biocompatibility
    Ramos-Corella, K. J.
    Sotelo-Lerma, M.
    Gil-Salido, A. A.
    Rubio-Pino, J. L.
    Auciello, O.
    Quevedo-Lopez, M. A.
    MATERIALS TECHNOLOGY, 2019, 34 (08) : 455 - 462
  • [44] Effect of TiO2 Crystalline Phase on Performance of Flux Assisted GTA Welds
    Tseng, Kuang-Hung
    Chen, Po-Yuan
    MATERIALS AND MANUFACTURING PROCESSES, 2016, 31 (03) : 359 - 365
  • [45] Ultrafast and low temperature laser annealing for crystalline TiO2 nanostructures patterned by electro-hydrodynamic lithography
    Cha, SeungNam
    Lee, Suok
    Jang, Jae Eun
    Jang, Arang
    Hong, Jin Pyo
    Lee, Jaejong
    Sohn, Jung Inn
    Kang, Dae Joon
    Kim, Jong Min
    APPLIED PHYSICS LETTERS, 2013, 103 (05)
  • [46] Effect of peptization on phase transformation of TiO2 nanoparticles
    Zhang, RB
    Gao, L
    MATERIALS RESEARCH BULLETIN, 2001, 36 (11) : 1957 - 1965
  • [47] Effect of TiO2 crystalline phase on CO oxidation over CuO catalysts supported on TiO2
    Kang, Mi Yeong
    Yun, Hyeong Jin
    Yu, Sungju
    Kim, Wooyoung
    Kim, Nam Dong
    Yi, Jongheop
    JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2013, 368 : 72 - 77
  • [48] Room temperature synthesis of highly crystalline TiO2 nanoparticles
    Ghamsari, M. Sasani
    Radiman, S.
    Hamid, M. Azmi Abdul
    Mahshid, S.
    Rahmani, Sh.
    MATERIALS LETTERS, 2013, 92 : 287 - 290
  • [49] Change of phase by annealing on TiO2 nanoparticles
    Sugapriya Subbaiyan
    Sriram Rangarajalu
    Lakshmi Sriram
    Russian Journal of Applied Chemistry, 2013, 86 : 811 - 816
  • [50] Dependence of energy conversion efficiency of dye-sensitized solar cells on the annealing temperature of TiO2 nanoparticles
    Hamadanian, Masood
    Jabbari, Vahid
    Gravand, Afshar
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2012, 15 (04) : 371 - 379