Explicit Chabauty-Kim for the split Cartan modular curve of level 13

被引:48
作者
Balakrishnan, Jennifer S. [1 ]
Dogra, Netan [2 ]
Muller, J. Steffen [3 ]
Tuitman, Jan [4 ]
Vonk, Jan [5 ]
机构
[1] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
[2] Univ Oxford, Jesus Coll, Oxford, England
[3] Univ Groningen, Bernoulli Inst, Groningen, Netherlands
[4] Katholieke Univ Leuven, Dept Wiskunde, Leuven, Belgium
[5] Univ Oxford, Math Inst, Oxford, England
关键词
Diophantine equations; modular curves; p-adic heights; non-abelian Chabauty; RATIONAL-POINTS; EXCEPTIONAL ISOMORPHISM; SELMER VARIETIES; REDUCTION; MAP;
D O I
10.4007/annals.2019.189.3.6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the explicit quadratic Chabauty methods developed in previous work by the first two authors to the case of non-hyperelliptic curves. This results in a method to compute a finite set of p-adic points, containing the rational points, on a curve of genus g >= 2 over the rationals whose Jacobian has Mordell-Weil rank g and Picard number greater than one, and which satisfies some additional conditions. This is then applied to determine the rational points of the modular curve X-s (13), completing the classification of non-CM elliptic curves over Q with split Cartan level structure due to Bilu-Parent and Bilu-Parent-Rebolledo.
引用
收藏
页码:885 / 944
页数:60
相关论文
共 71 条
[1]  
Agashe A., 2005, MATH COMPUT, V74, P455
[2]  
[Anonymous], 1970, ANN MATH
[3]  
[Anonymous], 1978, I HAUTES ETUDES SCI
[4]  
[Anonymous], 1970, TATA I FUNDAMENTAL R
[5]  
[Anonymous], 1997, J SYMB COMPUT, V24, P235, DOI [10.1006/jsco.1996.0125, DOI 10.1006/JSCO.1996.0125]
[6]  
[Anonymous], SPRINGER MONOGR MATH
[7]  
Balakrishnan J. S., 2017, 170500401 ARXIV
[8]  
Balakrishnan J. S., 2017, 171001673 ARXIV
[9]   A non-abelian conjecture of Tate-Shafarevich type for hyperbolic curves [J].
Balakrishnan, Jennifer S. ;
Dan-Cohen, Ishai ;
Kim, Minhyong ;
Wewers, Stefan .
MATHEMATISCHE ANNALEN, 2018, 372 (1-2) :369-428
[10]   QUADRATIC CHABAUTY AND RATIONAL POINTS, I: p-ADIC HEIGHTS [J].
Balakrishnan, Jennifer S. ;
Dogra, Netan .
DUKE MATHEMATICAL JOURNAL, 2018, 167 (11) :1981-2038