Exact Poincare constants in two-dimensional annuli

被引:1
作者
Rummler, Bernd [1 ]
Ruzicka, Michael [2 ]
Thaeter, Gudrun [3 ]
机构
[1] Otto von Guericke Univ, Inst Anal & Numer, PF 4120, D-39016 Magdeburg, Germany
[2] Univ Freiburg, Inst Angew Math, Eckerstr 1, D-79104 Freiburg, Germany
[3] KIT, Inst Angew & Num Math, Campus Sud,Geb 20-30,Englerstr 2, D-76131 Karlsruhe, Germany
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2017年 / 97卷 / 01期
关键词
Poincare constants; Laplacian; Stokes operator; 2d-annuli; first eigenvalues; HORIZONTAL CYLINDRICAL ANNULUS; NATURAL-CONVECTION; STOKES OPERATOR; EIGENFUNCTIONS; FLOWS;
D O I
10.1002/zamm.201500299
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide precise estimates of the Poincare constants firstly for scalar functions and secondly for solenoidal (i.e. divergence free) vector fields (in both cases with vanishing Dirichlet traces on the boundary) on 2d-annuli by the use of the first eigenvalues of the scalar Laplacian and the Stokes operator, respectively. In our non-dimensional setting each annulus A is defined via two concentrical circles with radii A/2 and A/2+1. Additionally, corresponding problems on domains , the 2d-annuli from , are investigated - for comparison but also to provide limits for 0. In particular, the Green's function of the Laplacian on with vanishing Dirichlet traces on is used to show that for sigma 0 the first eigenvalue here tends to the first eigenvalue of the corresponding problem on the open unit circle. On the other hand, we take advantage of the so-called small-gap limit for A.
引用
收藏
页码:110 / 122
页数:13
相关论文
共 17 条
[1]  
Andrews GE., 1999, SPECIAL FUNCTIONS EN
[2]  
[Anonymous], 1992, HIGHER ANAL
[3]  
[Anonymous], 1984, Navier-Stokes equations, theory and numerical analysis
[4]   Nondiffracting accelerating waves: Weber waves and parabolic momentum [J].
Bandres, Miguel A. ;
Rodriguez-Lara, B. M. .
NEW JOURNAL OF PHYSICS, 2013, 15
[5]  
CONSTANTIN P, 1988, Navier-stokes equations
[6]   A Green's function for the annulus. [J].
Englis, M ;
Peetre, J .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1996, 171 :313-377
[7]   A theoretical study of the first transition for the non-linear Stokes problem in a horizontal annulus [J].
Ferrario, Carlo ;
Passerini, Arianna .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2016, 78 :1-8
[8]  
Galdi G.P., 1998, INTRO MATH THEORY NA, VI
[9]  
Lee DS, 2002, Z ANGEW MATH MECH, V82, P399, DOI 10.1002/1521-4001(200206)82:6<399::AID-ZAMM399>3.0.CO
[10]  
2-6