Optimal sampling of MD simulations of primary damage formation in collision cascades

被引:7
作者
Voskoboinikov, Roman [1 ,2 ]
机构
[1] Natl Res Nucl Univ MEPhI, 31 Kashira Hwy, Moscow 115409, Russia
[2] Cent South Univ, Changsha 410083, Hunan, Peoples R China
基金
俄罗斯基础研究基金会;
关键词
Primary damage; Collision cascades; Molecular dynamics; Frenkel pairs; Sampling; DISPLACEMENT THRESHOLD ENERGIES; COMPUTER-SIMULATION; COPPER; DISLOCATION;
D O I
10.1016/j.nimb.2020.06.001
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
For a few decades now, molecular dynamics (MD) simulations have been extensively used for studying primary damage formation in collision cascades in materials exposed to fast particle irradiation. Because of the stochastic nature of defect production phenomena, it is vital to model collision cascades in batches with the same set of essential simulation parameters that includes primary knock-on atom (PKA) energy and target temperature in the first instance. No generally accepted practice has been established so far to determine the optimal size of the sampling set of MD simulations of collision cascades. The suggested simple a posteriori sampling set size validation method is based on reviewing the dependence of the average and median number of Frenkel pairs generated in collision cascades on the amount n of simulated cascades in a series with identical simulation parameters. As the average and median number of Frenkel pairs converges with raising n, the optimal sampling set size is determined as a function of the simulation conditions. It is shown how it depends on the PKA energy, irradiation temperature, alloy composition and the interaction of collision cascades with the free surfaces.
引用
收藏
页码:18 / 22
页数:5
相关论文
共 30 条
[1]  
Allen M.P., 1987, COMPUTER SIMULATION, P408
[2]   MD description of damage production in displacement cascades in copper and α-iron [J].
Bacon, DJ ;
Osetsky, YN ;
Stoller, R ;
Voskoboinikov, RE .
JOURNAL OF NUCLEAR MATERIALS, 2003, 323 (2-3) :152-162
[3]   REFINED UNIVERSAL POTENTIALS IN ATOMIC-COLLISIONS [J].
BIERSACK, JP ;
ZIEGLER, JF .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, 1982, 194 (1-3) :93-100
[4]   DETERMINATION OF STAGE I RECOVERY IN PURE ALUMINUM FOLLOWING ELECTRON IRRADIATION [J].
DAWSON, HI ;
ISELER, GW ;
MEHNER, AS ;
KAUFFMAN, JW .
PHYSICS LETTERS, 1965, 18 (03) :247-&
[5]   DISPLACEMENT THRESHOLD ENERGIES IN NI(AL) SOLID-SOLUTIONS AND IN NI3AL [J].
DIMITROV, C ;
SITAUD, B ;
DIMITROV, O .
JOURNAL OF NUCLEAR MATERIALS, 1994, 208 (1-2) :53-60
[6]  
Fock VA., 1978, FUNDAMENTALS QUANTUM
[7]   ROUND-ROBIN COMPUTER-SIMULATION OF ION TRANSMISSION THROUGH CRYSTALLINE LAYERS [J].
GARTNER, K ;
STOCK, D ;
WEBER, B ;
BETZ, G ;
HAUTALA, M ;
HOBLER, G ;
HOU, M ;
SARITE, S ;
ECKSTEIN, W ;
JIMENEZRODRIGUEZ, JJ ;
PEREZMARTIN, AMC ;
ANDRIBET, EP ;
KONOPLEV, V ;
GRASMARTI, A ;
POSSELT, M ;
SHAPIRO, MH ;
TOMBRELLO, TA ;
URBASSEK, HM ;
HENSEL, H ;
YAMAMURA, Y ;
TAKEUCHI, W .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1995, 102 (1-4) :183-197
[8]   PRODUCTION RATES OF ELECTRICAL RESISTIVITY IN COPPER AND ALUMINUM INDUCED BY ELECTRON IRRADIATION [J].
ISELER, GW ;
DAWSON, HI ;
MEHNER, AS ;
KAUFFMAN, JW .
PHYSICAL REVIEW, 1966, 146 (02) :468-&
[9]  
Landau L.D., 1976, COURSE THEORETICAL P, DOI [10.1016/C2009-0-25569-3, DOI 10.1016/C2009-0-25569-3]
[10]  
Lindemann FA, 1910, PHYS Z, V11, P609