Probe integrated scattering cross sections in the analysis of atomic resolution HAADF STEM images

被引:93
作者
E, H. [1 ]
MacArthur, K. E. [1 ]
Pennycook, T. J. [1 ,2 ]
Okunishi, E. [3 ]
D'Alfonso, A. J. [4 ]
Lugg, N. R. [4 ]
Allen, L. J. [4 ]
Nellist, P. D. [1 ,2 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] SERC, Daresbury Lab, SuperSTEM Facil, EPSRC, Warrington WA4 4AD, Cheshire, England
[3] JEOL Ltd, EM Applicat Grp, Akishima, Tokyo 1968558, Japan
[4] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会; 英国工程与自然科学研究理事会;
关键词
HAADF STEM; Quantification; Cross section; 2D materials; Source coherence; TRANSMISSION ELECTRON-MICROSCOPY; INDIVIDUAL DOPANT ATOMS; Z-CONTRAST; CLUSTERS; ANGLE; QUANTIFICATION; PLATINUM; TILT;
D O I
10.1016/j.ultramic.2013.07.002
中图分类号
TH742 [显微镜];
学科分类号
摘要
The physical basis for using a probe-position integrated cross section (PICS) for a single column of atoms as an effective way to compare simulation and experiment in high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) is described, and the use of PICS in order to make quantitative use of image intensities is evaluated. It is based upon the calibration of the detector and the measurement of scattered intensities. Due to the predominantly incoherent nature of HAADF STEM, it is found to be robust to parameters that affect probe size and shape such as defocus and source coherence. The main imaging parameter dependencies are on detector angle and accelerating voltage, which are well known. The robustness to variation in other parameters allows for a quantitative comparison of experimental data and simulation without the need to lit parameters. By demonstrating the application of the [PICS to the chemical identification of single atoms in a heterogeneous catalyst and in thin, layered-materials, we explore some of the experimental considerations when using this approach. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:109 / 119
页数:11
相关论文
共 52 条
[1]   Elemental mapping in scanning transmission electron microscopy [J].
Allen, L. J. ;
D'Alfonso, A. J. ;
Findlay, S. D. ;
LeBeau, J. M. ;
Lugg, N. R. ;
Stemmer, S. .
ELECTRON MICROSCOPY AND ANALYSIS GROUP CONFERENCE 2009 (EMAG 2009), 2010, 241
[2]   Lattice-resolution contrast from a focused coherent electron probe. Part I [J].
Allen, LJ ;
Findlay, SD ;
Oxley, MP ;
Rossouw, CJ .
ULTRAMICROSCOPY, 2003, 96 (01) :47-63
[3]   Nanogold: A Quantitative Phase Map [J].
Barnard, Amanda S. ;
Young, Neil P. ;
Kirkland, Angus I. ;
van Huis, Marijn A. ;
Xu, Huifang .
ACS NANO, 2009, 3 (06) :1431-1436
[4]   Imaging at the picoscale [J].
Bleloch, Andrew ;
Lupini, Andrew .
MATERIALS TODAY, 2004, 7 (12) :42-48
[5]   Quantification of ADF STEM images of molybdenum chalcogenide nanowires [J].
Cosgriff, E. C. ;
Nicolosi, V. ;
Coleman, J. N. ;
Nellist, P. D. .
EMAG-NANO 2005: IMAGING, ANALYSIS AND FABRICATION ON THE NANOSCALE, 2006, 26 :280-+
[6]   ELECTRON-MICROSCOPES USING FIELD-EMISSION SOURCE [J].
CREWE, AV .
SURFACE SCIENCE, 1975, 48 (01) :152-160
[7]   HIGH-RESOLUTION SCANNING-TRANSMISSION ELECTRON-MICROSCOPY [J].
CREWE, AV .
SCIENCE, 1983, 221 (4608) :325-330
[8]   Sub-0.1 nm-resolution quantitative scanning transmission electron microscopy without adjustable parameters [J].
Dwyer, C. ;
Maunders, C. ;
Zheng, C. L. ;
Weyland, M. ;
Tiemeijer, P. C. ;
Etheridge, J. .
APPLIED PHYSICS LETTERS, 2012, 100 (19)
[9]   Measurement of effective source distribution and its importance for quantitative interpretation of STEM images [J].
Dwyer, C. ;
Erni, R. ;
Etheridge, J. .
ULTRAMICROSCOPY, 2010, 110 (08) :952-957
[10]   Method to measure spatial coherence of subangstrom electron beams [J].
Dwyer, Christian ;
Erni, Rolf ;
Etheridge, Joanne .
APPLIED PHYSICS LETTERS, 2008, 93 (02)