The skew energy of random oriented graphs

被引:14
作者
Chen, Xiaolin
Li, Xueliang [1 ]
Lian, Huishu
机构
[1] Nankai Univ, Ctr Cornbinator, Tianjin 300071, Peoples R China
关键词
Skew energy; Random graph; Oriented graph; Random matrix; Eigenvalues; Empirical spectral distribution; Limiting spectral distribution; Moment method; DIGRAPHS;
D O I
10.1016/j.laa.2013.02.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a graph G, let G(sigma) be an oriented graph of G with the orientation sigma and skew-adjacency matrix S(G(sigma)). The skew energy of the oriented graph G(sigma), denoted by epsilon(S)(G(sigma)), is defined as the sum of the absolute values of all the eigenvalues of S(G(sigma)). In this paper, we study the skew energy of random oriented graphs and formulate an exact estimate of the skew energy for almost all oriented graphs by generalizing Wigner's semicircle law. Moreover, we consider the skew energy of random regular oriented graphs G(n,d)(sigma), and get an exact estimate of the skew energy for almost all regular oriented graphs. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:4547 / 4556
页数:10
相关论文
共 19 条
  • [1] The skew energy of a digraph
    Adiga, C.
    Balakrishnan, R.
    So, Wasin
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (07) : 1825 - 1835
  • [2] [Anonymous], 2009, Analysis of Complex Networks: From Biology to Linguistics, DOI DOI 10.1002/9783527627981.CH7
  • [3] [Anonymous], 2001, RANDOM GRAPHS
  • [4] Bai Z, 2010, SPRINGER SER STAT, P1, DOI 10.1007/978-1-4419-0661-8
  • [5] The energy of random graphs
    Du, Wenxue
    Li, Xueliang
    Li, Yiyang
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) : 2334 - 2346
  • [6] Du WX, 2010, MATCH-COMMUN MATH CO, V64, P251
  • [7] The Laplacian energy of random graphs
    Du, Wenxue
    Li, Xueliang
    Li, Yiyang
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 368 (01) : 311 - 319
  • [8] 3-Regular digraphs with optimum skew energy
    Gong, Shi-Cai
    Xu, Guang-Hui
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (03) : 465 - 471
  • [9] Gutman I., 1978, Ber. Math. Statist. Sekt. Forschungsz Graz., V103, DOI [DOI 10.1016/J.LAA.2004.02.038, DOI 10.1088/1742-5468/2008/10/P10008]
  • [10] Hou Y., ORIENTED UNICYCLIC G