Mesoscopic theory for fluctuating active nematics

被引:104
作者
Bertin, Eric [1 ,2 ]
Chate, Hugues [2 ,3 ,4 ]
Ginelli, Francesco [5 ,6 ]
Mishra, Shradha [7 ]
Peshkov, Anton [2 ,3 ,4 ]
Ramaswamy, Sriram [2 ,8 ]
机构
[1] Univ Lyon, Lab Phys, ENS Lyon, CNRS, F-69007 Lyon, France
[2] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[3] CEA Saclay, CNRS, URA 2464, Serv Phys Etat Condense, F-91191 Gif Sur Yvette, France
[4] Univ Paris 06, CNRS, UMR 7600, LPTMC, F-75252 Paris, France
[5] Univ Aberdeen, Kings Coll, Dept Phys, SUPA, Aberdeen AB24 3UE, Scotland
[6] Univ Aberdeen, Kings Coll, Inst Complex Syst & Math Biol, Aberdeen AB24 3UE, Scotland
[7] Indian Inst Technol, Dept Phys & Meteorol, Kharagpur 721302, W Bengal, India
[8] Tata Inst Fundamental Res, TIFR Ctr Interdisciplinary Sci, Hyderabad 500075, Andhra Pradesh, India
基金
英国工程与自然科学研究理事会;
关键词
GIANT NUMBER FLUCTUATIONS; HYDRODYNAMICS; BEHAVIOR; DENSITY; MOTION; SYSTEM; ORDER;
D O I
10.1088/1367-2630/15/8/085032
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The term active nematics designates systems in which apolar elongated particles spend energy to move randomly along their axis and interact by inelastic collisions in the presence of noise. Starting from a simple Vicsek-style model for active nematics, we derive a mesoscopic theory, complete with effective multiplicative noise terms, using a combination of kinetic theory and Ito calculus approaches. The stochastic partial differential equations thus obtained are shown to recover the key terms argued in Ramaswamy et al (2003 Europhys. Lett. 62 196) to be at the origin of anomalous number fluctuations and long-range correlations. Their deterministic part is studied analytically, and is shown to give rise to the long-wavelength instability at onset of nematic order (see Shi X and Ma Y 2010 arXiv:1011.5408). The corresponding nonlinear density-segregated band solution is given in a closed form.
引用
收藏
页数:27
相关论文
共 49 条
[1]   Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study [J].
Ballerini, M. ;
Calbibbo, N. ;
Candeleir, R. ;
Cavagna, A. ;
Cisbani, E. ;
Giardina, I. ;
Lecomte, V. ;
Orlandi, A. ;
Parisi, G. ;
Procaccini, A. ;
Viale, M. ;
Zdravkovic, V. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (04) :1232-1237
[2]   Self-regulation in self-propelled nematic fluids [J].
Baskaran, A. ;
Marchetti, M. C. .
EUROPEAN PHYSICAL JOURNAL E, 2012, 35 (09)
[3]   Hydrodynamics of self-propelled hard rods [J].
Baskaran, Aparna ;
Marchetti, M. Cristina .
PHYSICAL REVIEW E, 2008, 77 (01)
[4]   Enhanced Diffusion and Ordering of Self-Propelled Rods [J].
Baskaran, Aparna ;
Marchetti, M. Cristina .
PHYSICAL REVIEW LETTERS, 2008, 101 (26)
[5]   Boltzmann and hydrodynamic description for self-propelled particles [J].
Bertin, Eric ;
Droz, Michel ;
Gregoire, Guillaume .
PHYSICAL REVIEW E, 2006, 74 (02)
[6]   Hydrodynamic equations for self-propelled particles: microscopic derivation and stability analysis [J].
Bertin, Eric ;
Droz, Michel ;
Gregoire, Guillaume .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (44)
[7]   From disorder to order in marching locusts [J].
Buhl, J ;
Sumpter, DJT ;
Couzin, ID ;
Hale, JJ ;
Despland, E ;
Miller, ER ;
Simpson, SJ .
SCIENCE, 2006, 312 (5778) :1402-1406
[8]   Simple model for active nematics:: Quasi-long-range order and giant fluctuations [J].
Chaté, H ;
Ginelli, F ;
Montagne, R .
PHYSICAL REVIEW LETTERS, 2006, 96 (18)
[9]   Collective motion of self-propelled particles interacting without cohesion [J].
Chate, Hugues ;
Ginelli, Francesco ;
Gregoire, Guillaume ;
Raynaud, Franck .
PHYSICAL REVIEW E, 2008, 77 (04)
[10]   Kinetic theory for systems of self-propelled particles with metric-free interactions [J].
Chou, Yen-Liang ;
Wolfe, Rylan ;
Ihle, Thomas .
PHYSICAL REVIEW E, 2012, 86 (02)