Hamiltonian Kneser graphs

被引:15
作者
Chen, YC [1 ]
Füredi, Z
机构
[1] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
[2] Hungarian Acad, Renyi Inst Math, H-1364 Budapest, Hungary
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
匈牙利科学研究基金会;
关键词
AMS Subject Classification (2000) Classes:  05C45; 05C38;
D O I
10.1007/s004930200007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Kneser graph K(n,k) has as vertices the k-subsets of {1,2,...,n}. Two vertices are adjacent if the corresponding k-subsets are disjoint. It was recently proved by the first author [2] that Kneser graphs have Hamilton cycles for n greater than or equal to 3k. In this note, we give a short proof for the case when k divides n.
引用
收藏
页码:147 / 149
页数:3
相关论文
共 5 条
[1]  
Baranyai Zs., 1975, C MATH SOC JANOS BOL, V10, P91
[2]   Kneser graphs are Hamiltonian for n ≥ 3k [J].
Chen, YC .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2000, 80 (01) :69-79
[3]  
Lovasz L., 1970, Combinatorial Structures and Their Applications
[4]  
NIJENHUIS A, 1975, COMBINATORIAL ALGORI, P21
[5]  
van Lint J., 1992, A Course in Combinatorics