Mesoporous Vertical Co3O4 Nanosheet Arrays on Nitrogen-Doped Graphene Foam with Enhanced Charge-Storage Performance

被引:84
作者
Zou, Yuqin [1 ]
Kinloch, Ian A. [2 ]
Dryfe, Robert A. W. [1 ]
机构
[1] Univ Manchester, Sch Chem, Manchester M13 9PL, Lancs, England
[2] Univ Manchester, Sch Mat, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
cobalt oxide; hollow 3D structure; nitrogen-doped graphene foam; enhanced capacitive performance; charge storage; ELECTROCHEMICAL CAPACITORS; SUPERCAPACITOR ELECTRODES; THIN-FILM; NI FOAM; OXIDE; HYDROXIDE; NETWORKS; GROWTH; ENERGY; SENSOR;
D O I
10.1021/acsami.5b05095
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A hierarchical electrode structure, consisting of cobalt oxide and nitrogen-doped graphene foam (NGF), has been fabricated with the aim of achieving enhanced charge-storage performance. Characterization of the material via electron microscopy and Raman spectroscopy demonstrates that the Co3O4 nanosheets grow vertically on NGF and the nanosheets are mesoporous with pore diameters between 3 and 8 rim. The Co3O4/NGF electrode shows an enhanced charge-storage performance, attributed to the 3D hierarchical structure and the synergistic effect of Co3O4 and NGF. The present study shows that specific capacitances as high as 451 F can be obtained, indicating that high-performance electrochemical capacitors can be made using electrode materials with be readily extended to other electroactive materials and their composites.
引用
收藏
页码:22831 / 22838
页数:8
相关论文
共 41 条
[1]  
[Anonymous], ADV ENERGY MAT
[2]   Pseudocapacitive oxide materials for high-rate electrochemical energy storage [J].
Augustyn, Veronica ;
Simon, Patrice ;
Dunn, Bruce .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1597-1614
[3]   Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni [J].
Biesinger, Mark C. ;
Payne, Brad P. ;
Grosvenor, Andrew P. ;
Lau, Leo W. M. ;
Gerson, Andrea R. ;
Smart, Roger St. C. .
APPLIED SURFACE SCIENCE, 2011, 257 (07) :2717-2730
[4]   ELECTROCHEMICAL SURFACE-PROPERTIES OF CO3O4 ELECTRODES [J].
BOGGIO, R ;
CARUGATI, A ;
TRASATTI, S .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1987, 17 (04) :828-840
[5]   To Be or Not To Be Pseudocapacitive? [J].
Brousse, Thierry ;
Belanger, Daniel ;
Long, Jeffrey W. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (05) :A5185-A5189
[6]   Three-dimensional graphene materials: preparation, structures and application in supercapacitors [J].
Cao, Xiehong ;
Yin, Zongyou ;
Zhang, Hua .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (06) :1850-1865
[7]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
[8]  
Conway B.E., 1999, ELECTROCHEM SUPERCAP, DOI DOI 10.1007/978-1-4757-3058-6
[9]   3D Graphene-Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection [J].
Dong, Xiao-Chen ;
Xu, Hang ;
Wang, Xue-Wan ;
Huang, Yin-Xi ;
Chan-Park, Mary B. ;
Zhang, Hua ;
Wang, Lian-Hui ;
Huang, Wei ;
Chen, Peng .
ACS NANO, 2012, 6 (04) :3206-3213
[10]   Preparation of CTAB-Assisted Hexagonal Platelet Co(OH)2/Graphene Hybrid Composite as Efficient Supercapacitor Electrode Material [J].
Ghosh, Debasis ;
Giri, Soumen ;
Das, Chapal Kumar .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2013, 1 (09) :1135-1142