Note: Aris-Taylor dispersion from single-particle point of view

被引:4
作者
Berezhkovskii, Alexander M. [1 ]
机构
[1] NIH, Math & Stat Comp Lab, Div Computat Biosci, Ctr Informat Technol, Bethesda, MD 20892 USA
关键词
Brownian movement;
D O I
10.1063/1.4746027
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
When a point Brownian particle diffuses in a straight circular tube in the presence of a laminar stationary flow of the liquid, its effective diffusion coefficient along the tube axis increases compared to its value in the absence of flow. The effective diffusion coefficient as a function of the average fluid velocity and the tube radius is given by the Aris-Taylor formula. We give a new derivation of this formula, which is based on consideration of the axial displacement of the particle that moves in the plane normal to the tube axis along a given trajectory. The result is obtained by averaging the displacement and its square over different realizations of the particle trajectory and analyzing the long-time asymptotic behavior of the two moments. © 2012 U.S. Government.
引用
收藏
页数:2
相关论文
共 3 条
[1]   ON THE DISPERSION OF A SOLUTE IN A FLUID FLOWING THROUGH A TUBE [J].
ARIS, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1956, 235 (1200) :67-77
[2]  
Duffy D. G., 2001, Greens Functions with Applications
[3]   DISPERSION OF SOLUBLE MATTER IN SOLVENT FLOWING SLOWLY THROUGH A TUBE [J].
TAYLOR, G .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1953, 219 (1137) :186-203