Cohomology of moduli spaces of curves of genus three via point counts

被引:20
作者
Bergstrom, Jonas [1 ]
机构
[1] KTH, Dept Math, S-10044 Stockholm, Sweden
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2008年 / 622卷
关键词
D O I
10.1515/CRELLE.2008.068
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we consider the moduli space of smooth n-pointed non-hyperelliptic curves of genus 3. In the pursuit of cohomological information about this space, we make S-n-equivariant counts of its numbers of points defined over finite fields for n <= 7. Combining this with results on the moduli spaces of smooth pointed curves of genus 0, 1 and 2, and the moduli space of smooth hyperelliptic curves of genus 3, we can determine the S-n-equivariant Galois and Hodge structure of the (l-adic respectively Betti) cohomology of the moduli space of stable curves of genus 3 for n <= 5 ( to obtain n <= 7 we would need counts of "8-pointed curves of genus 2'').
引用
收藏
页码:155 / 187
页数:33
相关论文
共 15 条
[1]  
Belorousski P., 1998, THESIS U CHICAGO
[2]  
BERGSTROM J, ARXIVMATHAG0611813
[3]  
BERGSTROM J, ARXIV07050293
[4]  
Bergström J, 2007, MATH ANN, V338, P207, DOI 10.1007/s00208-006-0073-z
[5]  
Darmon H., 1994, CURRENT DEV MATH 199, P1
[6]   On the cohomology of local systems on the moduli spaces of curves of genus 2 and of Abelian surfaces, I. [J].
Faber, C ;
van der Geer, G .
COMPTES RENDUS MATHEMATIQUE, 2004, 338 (05) :381-384
[7]   Resolving mixed Hodge modules on configuration spaces [J].
Getzler, E .
DUKE MATHEMATICAL JOURNAL, 1999, 96 (01) :175-203
[8]  
GETZLER E, ARXIVMATHAG9910174
[9]  
KATZ NM, 1999, AM MATH SOC COLL PUB, V45
[10]   Equivariant Poincare polynomials and counting points over finite fields [J].
Kisin, M ;
Lehrer, GI .
JOURNAL OF ALGEBRA, 2002, 247 (02) :435-451