Class-specific correlations of gene expressions: Identification and their effects on clustering analyses

被引:5
作者
Zhang, Jigang [1 ,2 ,4 ]
Li, Jian [3 ]
Deng, Hongwen [1 ,2 ,4 ,5 ]
机构
[1] Univ Missouri, Sch Med, Dept Orthoped Surg, Kansas City, MO 64108 USA
[2] Univ Missouri, Sch Med, Dept Basic Med Sci, Kansas City, MO 64108 USA
[3] Univ Missouri, Sch Med, Dept Informat Med & Personalized Hlth, Kansas City, MO 64108 USA
[4] Xi An Jiao Tong Univ, Sch Life Sci & Technol, Xian 710049, Shaanxi, Peoples R China
[5] Hunan Normal Univ, Coll Life Sci, Lab Mol & Stat Genet, Changsha 410081, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.ajhg.2008.07.009
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Current microarray studies primarily focus on identifying individual genes with differential expression levels across different conditions or classes. A potential problem is that they may disregard multidimensional information hidden in gene interactions. In this study, we propose an approach to detect gene interactions related to study phenotypes through identifying gene pairs with correlations that appear to be class or condition specific. In addition, we explore the effects of ignoring class-specific correlations (CSC) on correlation-based gene-clustering analyses. Our simulation studies show that ignoring CSC can significantly decrease the accuracy of gene clustering and increase the dissimilarity within clusters. Our results from a DLBCL (distinct types of diffuse large B cell lymphoma) data set illustrate that CSC are clearly present and have great adverse effects on gene-clustering results if ignored. Meanwhile, interesting biological interpretations may be derived from studying gene pairs with CSC. This study demonstrates that our algorithm is simple and computationally efficient and has the ability to detect gene pairs with CSC that are informative for uncovering interesting regulation patterns.
引用
收藏
页码:269 / 277
页数:9
相关论文
共 40 条
[21]   Intensity-based segmentation of microarray images [J].
Nagarajan, R .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2003, 22 (07) :882-889
[22]   Gene-set approach for expression pattern analysis [J].
Nam, Dougu ;
Kim, Seon-Young .
BRIEFINGS IN BIOINFORMATICS, 2008, 9 (03) :189-197
[23]   Synexpression groups in eukaryotes [J].
Niehrs, C ;
Pollet, N .
NATURE, 1999, 402 (6761) :483-487
[24]   Detecting multivariate differentially expressed genes [J].
Nilsson, Roland ;
Pena, Jose M. ;
Bjorkegren, Johan ;
Tegner, Jesper .
BMC BIOINFORMATICS, 2007, 8 (1)
[25]  
NUBER UA, 2005, DNA MICROARRAYS
[26]   A systematic comparison and evaluation of biclustering methods for gene expression data [J].
Prelic, A ;
Bleuler, S ;
Zimmermann, P ;
Wille, A ;
Bühlmann, P ;
Gruissem, W ;
Hennig, L ;
Thiele, L ;
Zitzler, E .
BIOINFORMATICS, 2006, 22 (09) :1122-1129
[27]   Identification of co-regulated genes through Bayesian clustering of predicted regulatory binding sites [J].
Qin, ZHS ;
McCue, LA ;
Thompson, W ;
Mayerhofer, L ;
Lawrence, CE ;
Liu, JS .
NATURE BIOTECHNOLOGY, 2003, 21 (04) :435-439
[28]   A module map showing conditional activity of expression modules in cancer [J].
Segal, E ;
Friedman, N ;
Koller, D ;
Regev, A .
NATURE GENETICS, 2004, 36 (10) :1090-1098
[29]   Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization [J].
Spellman, PT ;
Sherlock, G ;
Zhang, MQ ;
Iyer, VR ;
Anders, K ;
Eisen, MB ;
Brown, PO ;
Botstein, D ;
Futcher, B .
MOLECULAR BIOLOGY OF THE CELL, 1998, 9 (12) :3273-3297
[30]   A direct approach to false discovery rates [J].
Storey, JD .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2002, 64 :479-498