The Research of Motion in a Neighborhood of Collinear Libration Point by Conservative Methods

被引:3
作者
Shmyrov, A. [1 ]
Shmyrov, V. [1 ]
Shymanchuk, D. [1 ]
机构
[1] St Petersburg State Univ, 7-9 Univ Skaya Nab Str, St Petersburg 199034, Russia
来源
APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES | 2017年 / 1895卷
关键词
D O I
10.1063/1.5007388
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we research the orbital motion described by equations in hamiltonian form. The shift mapping along a trajectory of motion is canonical one and it makes possible to apply conservative methods. The examples of application of such methods in problems of celestial mechanics are given. The first order approximation of generating function of shift mapping along the trajectory is constructed for uncontrolled motion in a neighborhood of collinear libration point of Sun-Earth system. Also this approach is applied to controllable motion with special kind of control, which ensuring the preservation of hamiltonian form of the equations of motion. The form of iterative schemes for numerical modeling of motion is given. For fixed number of iterations the accuracy of presented numerical method is estimated in comparison with Runge-Kutta method of the fourth order. The analytical representation of the generating function up to second-order terms with respect to time increment is given.
引用
收藏
页数:6
相关论文
共 14 条
[1]  
Arnold V. I., 1997, MATH METHODS CLASSIC
[2]  
Duboshin G. N., 1975, CELESTIAL MECH FUNDA
[3]  
Ivanov A., 2005, IPAC 2013, P2582
[4]  
Kulakov F., 2016, Applied mathematical sciences, V10, P1783
[5]  
Kulakov F, 2015, 2015 INTERNATIONAL CONFERENCE "STABILITY AND CONTROL PROCESSES" IN MEMORY OF V.I. ZUBOV (SCP), P102, DOI 10.1109/SCP.2015.7342075
[6]   Method of Lyapunov Functions for Controllable Hamiltonian Systems [J].
Shmyrov, Alexander ;
Shmyrov, Vasily .
2014 20TH INTERNATIONAL WORKSHOP ON BEAM DYNAMICS AND OPTIMIZATION (BDO), 2014, :157-157
[7]  
[Шмыров А.С. Shmyrov A.S.], 2009, [Вестник Санкт-Петербургского университета. Серия 10: Прикладная математика. Информатика. Процессы управления, Vestnik Sankt-Peterburgskogo universiteta. Seriya 10: Prikladnaya matematika. Informatika. Protsessy upravleniya], P250
[8]  
Shmyrov A.S., 1998, VESTNIK SANKT PETE 1, V2, P86
[9]  
Shmyrov A.S., 1995, STABILITY HAMILTONIA
[10]  
Shmyrov A.S., 2015, APPL MATH SCI, V9, P7229