Particle Swarm Optimization Neural Network based Classification of Mental Tasks
被引:0
作者:
Hema, C. R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaysia Perlis, Sch Mechatron Engn, Kangar, Perlis, MalaysiaUniv Malaysia Perlis, Sch Mechatron Engn, Kangar, Perlis, Malaysia
Hema, C. R.
[1
]
Paulraj, M. P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaysia Perlis, Sch Mechatron Engn, Kangar, Perlis, MalaysiaUniv Malaysia Perlis, Sch Mechatron Engn, Kangar, Perlis, Malaysia
Paulraj, M. P.
[1
]
Yaacob, S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaysia Perlis, Sch Mechatron Engn, Kangar, Perlis, MalaysiaUniv Malaysia Perlis, Sch Mechatron Engn, Kangar, Perlis, Malaysia
Yaacob, S.
[1
]
Adom, A. H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaysia Perlis, Sch Mechatron Engn, Kangar, Perlis, MalaysiaUniv Malaysia Perlis, Sch Mechatron Engn, Kangar, Perlis, Malaysia
Adom, A. H.
[1
]
Nagarajan, R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaysia Perlis, Sch Mechatron Engn, Kangar, Perlis, MalaysiaUniv Malaysia Perlis, Sch Mechatron Engn, Kangar, Perlis, Malaysia
Nagarajan, R.
[1
]
机构:
[1] Univ Malaysia Perlis, Sch Mechatron Engn, Kangar, Perlis, Malaysia
来源:
4TH KUALA LUMPUR INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING 2008, VOLS 1 AND 2
|
2008年
/
21卷
/
1-2期
关键词:
EEG Signal Processing;
Brain Machine Interfaces;
PSO Neural Networks;
D O I:
暂无
中图分类号:
R318 [生物医学工程];
学科分类号:
0831 ;
摘要:
Classification of Mental Task EEG signals is a modus operandi for designing brain machine interfaces. Brain interfaces are designed to rehabilitate people with neural disorders to communicate or control devices. This paper proposes a novel algorithm to classify mental task signals using a particle swarm optimization training procedure for recurrent neural networks. The neural network is trained and tested with mental task signals acquired from two subjects. An average classification performance of 89.9% is observed.