An Efficient Deep Learning Framework for Low Rate Massive MIMO CSI Reporting

被引:59
作者
Liu, Zhenyu [1 ]
Zhang, Lin [1 ]
Ding, Zhi [2 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
[2] Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
Quantization (signal); Downlink; Massive MIMO; Bandwidth; Uplink; Decoding; Deep learning; FDD; CSI feedback; quantization; deep learning; FEEDBACK;
D O I
10.1109/TCOMM.2020.2993626
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Channel state information (CSI) reporting is important for multiple-input multiple-output (MIMO) wireless transceivers to achieve high capacity and energy efficiency in frequency division duplex (FDD) mode. CSI reporting for massive MIMO systems could consume large bandwidth and degrade spectrum efficiency. Deep learning (DL)-based CSI reporting integrated with channel characteristics has demonstrated success in improving CSI compression and recovery. To further improve the encoding efficiency of CSI feedback, we develop an efficient DL-based compression framework CQNet to jointly tackle CSI compression, codeword quantization, and recovery under the bandwidth constraint. CQNet is directly compatible with other DL-based CSI feedback works for further enhancement. We propose a more efficient quantization scheme in the radial coordinate by introducing a novel magnitude-adaptive phase quantization framework. Compared with traditional CSI reporting, CQNet demonstrates superior CSI feedback efficiency and better CSI reconstruction accuracy.
引用
收藏
页码:4761 / 4772
页数:12
相关论文
共 28 条
[1]  
[Anonymous], 7542008 IEEE, P1
[2]  
[Anonymous], 2019, IEEE WIREL COMMUN LE, DOI DOI 10.1109/LWC.2019.2935441
[3]   Mixed-integer nonlinear optimization [J].
Belotti, Pietro ;
Kirches, Christian ;
Leyffer, Sven ;
Linderoth, Jeff ;
Luedtke, James ;
Mahajan, Ashutosh .
ACTA NUMERICA, 2013, 22 :1-131
[4]   Spatially Common Sparsity Based Adaptive Channel Estimation and Feedback for FDD Massive MIMO [J].
Gao, Zhen ;
Dai, Linglong ;
Wang, Zhaocheng ;
Chen, Sheng .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (23) :6169-6183
[5]  
Guo JJ, 2020, IEEE T WIREL COMMUN, V19, P2827, DOI [10.1109/TWC.2020.2968430, 10.1109/TNSE.2020.2997359]
[6]   Deep Learning-Based Channel Estimation for Beamspace mmWave Massive MIMO Systems [J].
He, Hengtao ;
Wen, Chao-Kai ;
Jin, Shi ;
Li, Geoffrey Ye .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2018, 7 (05) :852-855
[7]  
Heath Jr. R., 2018, FDN MIMO COMMUNICATI
[8]  
Hochreiter S., 1997, Neural Computation, V9, P1735
[9]   Deep Autoencoder Based CSI Feedback With Feedback Errors and Feedback Delay in FDD Massive MIMO Systems [J].
Jang, Youngrok ;
Kong, Gyuyeol ;
Jung, Minchae ;
Choi, Sooyong ;
Kim, Il-Min .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (03) :833-836
[10]  
Johnson J., 2018, ARXIV181101721