Golgi inCOGnito: From vesicle tethering to human disease

被引:25
作者
D'Souza, Zinia [1 ]
Taher, Farhana S. [1 ]
Lupashin, Vladimir V. [1 ]
机构
[1] Univ Arkansas Med Sci, Dept Physiol & Biophys, 4301 West Markham St, Little Rock, AR 72205 USA
来源
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS | 2020年 / 1864卷 / 11期
关键词
COG complex; Golgi; Glycosylation; CDG; COG-CDG; Vesicle tethering; CONSERVED-OLIGOMERIC-GOLGI; COG COMPLEX; CONGENITAL DISORDERS; O-GLYCOSYLATION; STRUCTURAL BASIS; GALACTOSE SUPPLEMENTATION; DEFICIENCY REVEALS; N-GLYCOSYLATION; PROTEIN COMPLEX; SNARE COMPLEX;
D O I
10.1016/j.bbagen.2020.129694
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Conserved Oligomeric Golgi (COG) complex, a multi-subunit vesicle tethering complex of the CATCHR (Complexes Associated with Tethering Containing Helical Rods) family, controls several aspects of cellular homeostasis by orchestrating retrograde vesicle traffic within the Golgi. The COG complex interacts with all key players regulating infra-Golgi trafficking, namely SNAREs, SNARE-interacting proteins, Rabs, coiled-coil tethers, and vesicular coats. In cells, COG deficiencies result in the accumulation of non-tethered COG-complex dependent (CCD) vesicles, dramatic morphological and functional abnormalities of the Golgi and endosomes, severe defects in N- and O- glycosylation, Golgi retrograde trafficking, sorting and protein secretion. In humans, COG mutations lead to severe multi-systemic diseases known as COG-Congenital Disorders of Glycosylation (COG-CDG). In this report, we review the current knowledge of the COG complex and analyze COG-related trafficking and glycosylation defects in COG-CDG patients.
引用
收藏
页数:16
相关论文
共 137 条
  • [1] Exocyst dynamics during vesicle tethering and fusion
    Ahmed, Syed Mukhtar
    Nishida-Fukuda, Hisayo
    Li, Yuchong
    McDonald, W. Hayes
    Gradinaru, Claudiu C.
    Macara, Ian G.
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [2] Althonaian Nouf, 2018, JIMD Rep, V42, P105, DOI 10.1007/8904_2018_88
  • [3] [Anonymous], 2019, FRONT CELL DEV BIOL, DOI DOI 10.3389/FCELL.2019
  • [4] [Anonymous], 2014, NANOMATER NANOTECHNO, DOI DOI 10.5772/58828
  • [5] [Anonymous], 2020, J CELL BIOL
  • [6] [Anonymous], 2020, VIRUSES, DOI DOI 10.3390/V12070707
  • [7] A new role for RINT-1 in SNARE complex assembly at the trans-Golgi network in coordination with the COG complex
    Arasaki, Kohei
    Takagi, Daichi
    Furuno, Akiko
    Sohda, Miwa
    Misumi, Yoshio
    Wakana, Yuichi
    Inoue, Hiroki
    Tagaya, Mitsuo
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2013, 24 (18) : 2907 - 2917
  • [8] The first case of antenatal presentation in COG8-congenital disorder of glycosylation with a novel splice site mutation and an extended phenotype
    Arora, Veronica
    Puri, Ratna Dua
    Bhai, Pratibha
    Sharma, Nidhish
    Bijarnia-Mahay, Sunita
    Dimri, Nandita
    Baijal, Ashok
    Saxena, Renu
    Verma, Ishwar
    [J]. AMERICAN JOURNAL OF MEDICAL GENETICS PART A, 2019, 179 (03) : 480 - 485
  • [9] Neutralization of pH in the Golgi apparatus causes redistribution of glycosyltransferases and changes in the O-glycosylation of mucins
    Axelsson, MAB
    Karlsson, NG
    Steel, DM
    Ouwendijk, J
    Nilsson, T
    Hansson, GC
    [J]. GLYCOBIOLOGY, 2001, 11 (08) : 633 - 644
  • [10] Mechanisms of Protein Retention in the Golgi
    Banfield, David K.
    [J]. COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2011, 3 (08): : 1 - 14